www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Äquivalenzrelation, oder nicht
Äquivalenzrelation, oder nicht < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Äquivalenzrelation, oder nicht: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:54 Di 10.07.2007
Autor: JROppenheimer

Aufgabe
Der Index der Relation

x [mm] \sim [/mm] y [mm] \gdw (\forall [/mm] w,w' [mm] \in \Sigma^{\ast} [/mm] : wxw' [mm] \in [/mm] L [mm] \gdw [/mm] wyw' [mm] \in [/mm] L)

ist endlich.

Kann ich einfach folgendes folgern?

da wxw' [mm] \in [/mm] L [mm] \gdw [/mm] wyw' [mm] \in [/mm] L  gilt x [mm] \sim [/mm] y  ist symmetrisch.

kann man das einfach so sagen?

und wenn das dann so ist, kann man sagen:

wxw' [mm] \in [/mm] L [mm] \gdw [/mm] wyw' [mm] \in [/mm] L [mm] \gdw [/mm] wzw' [mm] \in [/mm]  L
[mm] \Rightarrow [/mm] wxw' [mm] \in [/mm] L [mm] \gdw [/mm] wzw' [mm] \in [/mm] L ??

        
Bezug
Äquivalenzrelation, oder nicht: Antwort
Status: (Antwort) fertig Status 
Datum: 01:44 Mi 11.07.2007
Autor: Gonozal_IX

Hiho,

> da wxw' [mm]\in[/mm] L [mm]\gdw[/mm] wyw' [mm]\in[/mm] L  gilt x [mm]\sim[/mm] y  ist
> symmetrisch.

Ja, da mit [mm]wxw' \in L \gdw wyw' \in L[/mm] trivialerweise auch [mm]wyw' \in L \gdw wxw' \in L[/mm] gilt und damit y ~ x.


> und wenn das dann so ist, kann man sagen:
>  
> wxw' [mm]\in[/mm] L [mm]\gdw[/mm] wyw' [mm]\in[/mm] L [mm]\gdw[/mm] wzw' [mm]\in[/mm]  L
>  [mm]\Rightarrow[/mm] wxw' [mm]\in[/mm] L [mm]\gdw[/mm] wzw' [mm]\in[/mm] L ??

Jap, genau so ist es :-) Allerdings würd ichs halt echt in 3 Schritten machen:

x ~ y [mm]\Rightarrow (wxw' \in L \gdw wyw' \in L)[/mm](1)
y ~ z [mm]\Rightarrow (wyw' \in L \gdw wzw' \in L)[/mm](2)
[mm] (1)\wedge [/mm] (2) [mm]\Rightarrow (wxw' \in L \gdw wzw' \in L \Rightarrow)[/mm] x ~ z

Ist genau das, was du da auch stehen hast, sieht nur schöner aus.

MfG,
Gono.



Bezug
                
Bezug
Äquivalenzrelation, oder nicht: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:16 Mi 11.07.2007
Autor: JROppenheimer

Aber da stellt sich mir doch die Frage:

Wenn das so wäre, würde doch aus Symmetrie immer gleich Transitivität folgen, oder?

Angenommen z = x.

Dann würde DARAUS auch noch folgen, dass x~x und dann wäre das ja gleich ne Äquivalenzrelation.
Wenn aber jetzt die Relation ~ BEISPIELSWEISE "ungleich" wäre, dann würde das doch alles nicht stimmen, oder?

Bezug
                        
Bezug
Äquivalenzrelation, oder nicht: Antwort
Status: (Antwort) fertig Status 
Datum: 12:30 Mi 11.07.2007
Autor: Bastiane

Hallo JROppenheimer!

> Wenn das so wäre, würde doch aus Symmetrie immer gleich
> Transitivität folgen, oder?
>  
> Angenommen z = x.

Hier liegt genau der Punkt. Es reicht nicht, dass es "für ein bestimmtes z transitiv ist" , sondern es muss für ein beliebiges z gelten bzw. für alle z.

Viele Grüße
Bastiane
[cap]

Bezug
                                
Bezug
Äquivalenzrelation, oder nicht: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:09 Mi 11.07.2007
Autor: JROppenheimer

AAAH das war doch mal hilfreich, danke euch beiden ....

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de