www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra Sonstiges" - Äquivalenzrelationen
Äquivalenzrelationen < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Äquivalenzrelationen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:45 Do 18.10.2007
Autor: SirRichard

Aufgabe
Sei N={0,1,2,3....} die menge der natürlichen zahlen. Wir nennen zwei Zahlen k, l aus N äquivalent und schreiben k~l, falls sie denselben Rest bei der Division durch 7 ergeben

a) zeigen sie, dass ~eine Äquivalenzrelation ist
b)geben sie ein vollständiges Repräsentantensystem von ~ an, d.h. eine Menge R c N, die genau ein Element aus jeder Äquivalenzklasse von ~enthält

Hi, da ich ein Anfänger im Bereich der Linearen Algebra bin und ich aus der Vorlesung keinen Nutzen für einen Ansatz ziehen kann hoffe ich dass mir vielleicht einer von euch einen kleinen Tipp geben kann
wie ich zum Beispiel die Symmetrie, die Transitivität und die Reflexivität zeigen kann...
vielen dank


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Äquivalenzrelationen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:09 Do 18.10.2007
Autor: blascowitz

Guten Tach

also zu Aufgabe a)  Zwei natürliche Zahlen heißen Äquivalent wenn sie beide beim Teilen durch 7 den selben Rest lassen mathematisch gesprochen k~l [mm] \gdw [/mm] k [mm] \equiv [/mm] c mod 7 [mm] \wedge [/mm] l [mm] \equiv [/mm] c mod 7

Reflexiv. k~k denn beide Zahlen( weil sind ja die Selben) lassen bei Teilung durch 7 den Gleichen Rest. k~l [mm] \wedge [/mm] l~k bei Teilung lassen beide den Gleichen Rest also ist die Relation Symetrisch.
Transitivität: Wenn k~l ( Das heißt beide lassen den gleichen Rest bei Teilung durch 7) und l~m, dann ist auch k~m denn denn k lässt den selben rest wie l und m lässt die selben rest wie l also lässt auch k den selben rest wie l. So funktionieren solche Beweise über Relationen eigentlich immer

zu b)
HIer musst du dir überlegen welche Äquivalenzklassen auftreten können. Dann kannst du dir leicht vertreter Suchen. SChau auch mal bei wikipedia.de unter Äquivalenzrelation

Schönen Tach noch
Blasco

Bezug
                
Bezug
Äquivalenzrelationen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:41 Mo 22.10.2007
Autor: cloui

Hey,
ich hab jetzt mal dieselbe aufgabe gerechnet und hätte nun gerne gewusst ob ich das so schreiben kann.
ich fang mal an:

Um zu zeigen, dass k ~ l eine Äquivalenzrelation definiert, muss man die Relation auf Reflexivität, Symmetrie und Transitivität überprüfen.

Reflexivität:
k, l [mm] \in \IN [/mm]
k = k daraus folgt k ~ k

Symmetrie:
k = l und l = k, da beide denselben Rest bei der Division durch 7 haben; daraus folgt k ~ l und l ~ k

Transitivität:
k, l, h [mm] \in \IN [/mm]
wenn k = h und h = l, dann ist auch k = l, darausfolgt k ~ l

damit ist die äquivalenzrelation bewiesen

ist das so richtig, der beweis kommt mir irgendwie zu "einfach" vor

Bezug
                        
Bezug
Äquivalenzrelationen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:37 Mo 22.10.2007
Autor: angela.h.b.


> Hey,
> ich hab jetzt mal dieselbe aufgabe gerechnet und hätte nun
> gerne gewusst ob ich das so schreiben kann.
>  ich fang mal an:
>  
> Um zu zeigen, dass k ~ l eine Äquivalenzrelation definiert,
> muss man die Relation auf Reflexivität, Symmetrie und
> Transitivität überprüfen.
>  
> Reflexivität:
>  k, l [mm]\in \IN[/mm]
>  k = k daraus folgt k ~ k
>  
> Symmetrie:
>  k = l und l = k, da beide denselben Rest bei der Division
> durch 7 haben; daraus folgt k ~ l und l ~ k
>  
> Transitivität:
>  k, l, h [mm]\in \IN[/mm]
>  wenn k = h und h = l, dann ist auch k =
> l, darausfolgt k ~ l
>  
> damit ist die äquivalenzrelation bewiesen
>  
> ist das so richtig, der beweis kommt mir irgendwie zu
> "einfach" vor

Hallo,

ja, Du machst es Dir etwas zu einfach.

Richtig ist, daß Du Reflexivität, Symmetrie und Transitivität zeigen mußt.

Aber wenn a und b äquivalent sind, [mm] a\sim [/mm] b, sind sie doch noch lange nicht gleich!!!

Sondern: sie lassen bei der Division durch 7 denselben Rest.

Was bedeutet das für a und b?

Es gibt ein r , [mm] 0\le [/mm] r [mm] \le [/mm] 6  und [mm] k_a, k_b, [/mm] so daß gilt

[mm] a=k_a*a+r [/mm]  und
[mm] b=k_b*b+r. [/mm]

Mal ein Beispiel: Für 5,12 und 82 gilt [mm] 5\sim [/mm] 12, [mm] 5\sim [/mm] 82, [mm] 12\sim [/mm] 82.

Gruß v. Angela

Bezug
                                
Bezug
Äquivalenzrelationen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 07:27 Di 23.10.2007
Autor: cloui

ok, mit a und b meinst du wohl k und l oder?
und was bei dir ka und kb ist, nenn ich jetzt mal nk und bl
den schritt
K = nk * 7 - r
l = nl * 7 - r
versteh ich schonmal.
wie bringe ich das jetzt rüber, das k ~ l ist?

Bezug
                                        
Bezug
Äquivalenzrelationen: Antwort
Status: (Antwort) fertig Status 
Datum: 08:02 Di 23.10.2007
Autor: angela.h.b.


> ok, mit a und b meinst du wohl k und l oder?

Hallo,

eigentlich nicht.
Mit a und b meinte ich irgendwelche beliebigen Zahlen, welche äquivalent sind - genau wie bei Dir k und l für beliebige äquivalente Zahlen stehen (sollten).

>  und was bei dir ka und kb ist, nenn ich jetzt mal nk und
> bl
> den schritt
> K = nk * 7 + r
>  l = nl * 7+ r
>  versteh ich schonmal.
>  wie bringe ich das jetzt rüber, das k ~ l ist?

Da gibt's nichts "rüberzubringen".

Das ist lt. Definition so.

[mm] k\sim [/mm] l  

<==> k und l haben bei Division durch 7 denselben Rest

<==> es gibt [mm] n_k, n_l [/mm] und ein [mm] 0\le [/mm] r [mm] \le [/mm] 6 mit  > k = [mm] n_k [/mm] * 7 + r und l = [mm] n_l [/mm] * 7+ r.

Gruß v. Angela

Bezug
                                                
Bezug
Äquivalenzrelationen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:03 Di 23.10.2007
Autor: cloui

achso ok, ich hatte das jetzt spezifisch auf die aufgabe bezogen, deshalb hab ich gedacht du meinst a, b    k, l :)
damit wäre aber die symmetrie schon bewiesen oder muss ich das noch weiter ausführen? ich weiß nie so genau wie ausführlich ich das beeisen soll, weil die aussage von dir für mich schon so klar is, das ich jetzt denken würde der beweis wäre erbracht

Bezug
                                                        
Bezug
Äquivalenzrelationen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:19 Di 23.10.2007
Autor: angela.h.b.


>
>  damit wäre aber die symmetrie schon bewiesen oder muss ich
> das noch weiter ausführen? ich weiß nie so genau wie
> ausführlich ich das beeisen soll, weil die aussage von dir
> für mich schon so klar is, das ich jetzt denken würde der
> beweis wäre erbracht

Im Prinzip ist er das auch.

Gerade am Anfang mußt Du sehr ausführlich beweisen, und jeder Schritt muß begründet werden - nicht mit Gefühlen, sondern mit Definitionen und Sätzen, die dran waren.

Die Symmetrie würde ich so zeigen:

Seien k,l [mm] \in \IN [/mm] .

$ [mm] k\sim [/mm] $ l  

<==> k und l haben bei Division durch 7 denselben Rest     (nach Def. von [mm] \sim [/mm] )

<==> l und k haben bei Division durch 7 denselben Rest      (gesunder Menschenverstand - das würde ich aber nciht schreiben.)

<==> [mm] l\sim [/mm] k                  (nach Def. von [mm] \sim [/mm] )

Gruß v, Angela



Bezug
                                                                
Bezug
Äquivalenzrelationen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:47 Di 23.10.2007
Autor: cloui

ok das leuchtet mir alles ein, vielen dank :)

Bezug
                                                                
Bezug
Äquivalenzrelationen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:46 Di 23.10.2007
Autor: cloui

nochmal grade ein blöde frage, was hier in dem bsp. als ka und kb bezeichnet wurde, ist e IN und nicht der IR oder? weil eine natürliche zahl dividiert durch eine natürliche wieder eine natürliche gibt

Bezug
                                                                        
Bezug
Äquivalenzrelationen: Antwort
Status: (Antwort) fertig Status 
Datum: 11:10 Mi 24.10.2007
Autor: koepper

Hallo cloui,

> nochmal grade ein blöde frage, was hier in dem bsp. als ka
> und kb bezeichnet wurde, ist e IN und nicht der IR oder?

Nach der Aufgabenstellung legen wir die Menge [mm] $\IN$ [/mm] zugrunde.

> weil eine natürliche zahl dividiert durch eine natürliche
> wieder eine natürliche gibt

Das stimmt so natürlich nicht, aber du meinst sicher das richtige:

Der Rest bei einer solchen Division ist wieder eine natürliche Zahl.

Gruß
Will


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de