www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Grenzwerte" - Äquivalzenzrelationen
Äquivalzenzrelationen < Folgen+Grenzwerte < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Äquivalzenzrelationen: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 13:24 Di 08.11.2011
Autor: sunnygirl26

Aufgabe
Es sei n [mm] \in [/mm] N. Berechne:
1. Die Anzahl der surjektiven Abbildungen von {1,....,n}nach {1,2,3}.
2. Die Anzahl der dreiklassigen Äquivalenzrelationen auf {1,....,7}. (Hinweis: Wieviele surjektive
Abbildungen gehören zu derselben Äquivalenzrelation?)

Hallo,
also zum 1. teil hab ich schon das Ergebnis glaub ich. In der Übung wurde uns gesagt wir sollen erst betsimmen wie viele Abbildungen es insgesammt gibt das sind in dem Fall [mm] 3^n [/mm]
Dann sollen wir alle nicht surjektiven Abbildungen abziehen, dass sind  [mm] \vektor{3 \\ 2} *2^n=3*2^n [/mm]
und dann die Abbildungen wieder hinzufügen, die eine 1-elementiges Bild haben das sind 3 also hab ich als Menge aller surjektiven Abbildungen {f: {1,...,n} [mm] \to [/mm] {1,2,3} / f surj.}= [mm] 3^n [/mm] - [mm] 3*2^n [/mm] +3
wobei ich nicht genau weiß warum ich die Abbildungen mit einer 1-elementigen Bildmenge wieder abziehen muss.

Zu zwei hab ich allerdings keine idee. Ich weiß schonmal gar nicht wie ich rasfinden soll welche surjektiven Abbildungen zu einer Äquivalenzrelation gehören, sollen, weil ich hab ja nur eine Menge .....bin irgendwie total verwirrt .

        
Bezug
Äquivalzenzrelationen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:29 Di 08.11.2011
Autor: statler

Hallo!

> Es sei n [mm]\in[/mm] N. Berechne:
>  1. Die Anzahl der surjektiven Abbildungen von
> {1,....,n}nach {1,2,3}.
>  2. Die Anzahl der dreiklassigen Äquivalenzrelationen auf
> {1,....,7}. (Hinweis: Wieviele surjektive
>  Abbildungen gehören zu derselben Äquivalenzrelation?)


>  also zum 1. teil hab ich schon das Ergebnis glaub ich. In
> der Übung wurde uns gesagt wir sollen erst betsimmen wie
> viele Abbildungen es insgesammt gibt das sind in dem Fall
> [mm]3^n[/mm]
>  Dann sollen wir alle nicht surjektiven Abbildungen
> abziehen, dass sind  [mm]\vektor{3 \\ 2} *2^n=3*2^n[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)


>  und dann
> die Abbildungen wieder hinzufügen, die eine 1-elementiges
> Bild haben das sind 3 also hab ich als Menge aller
> surjektiven Abbildungen {f: {1,...,n} [mm]\to[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

{1,2,3} / f

> surj.}= [mm]3^n[/mm] - [mm]3*2^n[/mm] +3
>  wobei ich nicht genau weiß warum ich die Abbildungen mit
> einer 1-elementigen Bildmenge wieder abziehen muss.

Die sprachliche Formulierung ist nicht wirklich korrekt. Wenn du von allen Abbildungen die nicht-surjektiven abziehst, bleiben natürlich die surjektiven übrig. Aber die Anzahl der nicht-surjektiven ist $3 [mm] \cdot 2^n [/mm] - 3$. weil nämlich die konstante Abbildung auf 1 z. B. einmal bei den Abbildungen auf {1, 2} und einmal bei denjenigen auf {1, 3} vorkommt.

> Zu zwei hab ich allerdings keine idee. Ich weiß schonmal
> gar nicht wie ich rasfinden soll welche surjektiven
> Abbildungen zu einer Äquivalenzrelation gehören, sollen,
> weil ich hab ja nur eine Menge .....bin irgendwie total
> verwirrt .

Tip: Für eine surj. Abb. f definierst du x [mm] \sim [/mm] y [mm] \gdw [/mm] f(x) = f(y). Die weitere Ausführung überlasse ich freundlicherweise :-) dir.

Gruß aus HH-Harburg
Dieter



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de