www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionen" - Äquvalenzrelation
Äquvalenzrelation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Äquvalenzrelation: Konstruktion von Äquvalenzrela
Status: (Frage) beantwortet Status 
Datum: 13:08 Sa 21.01.2012
Autor: Winny

Aufgabe
Seien A Mengen und R [mm] \subseteq [/mm] AxA eine reflexive und transitive Relation. Die Relation [mm] \equiv [/mm] auf A sei wie folgt defineirt:
x [mm] \equiv [/mm] y: [mm] \gdw [/mm] xRy [mm] \wedge [/mm] yRx für alle x,y A.
Zeigen sie, dass [mm] \equiv [/mm]  eine Äquivalenzrelation auf A ist.

Hi Leute,
ich kann mit dieser Aufgabe leider gar nichts anfangen und weiß nicht, wie ich da ran gehen  soll. Ich freu mich also über jeden Tipp.
Vielen Dank!
ach und: Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Äquvalenzrelation: Antwort
Status: (Antwort) fertig Status 
Datum: 22:21 Sa 21.01.2012
Autor: chrisno

Wie wurde denn die Äquivalenzrelation definiert? So wie ich es kenne, gibt es nämlich nichts zu tun.
reflexiv und transitiv ist die Relation nach Voraussetzung. Die Symmetrie steht dann in der Definition.

Bezug
                
Bezug
Äquvalenzrelation: Definition
Status: (Frage) beantwortet Status 
Datum: 09:15 Mo 23.01.2012
Autor: Winny

Hmmm also nach unsere Definition muss eine Äquivalenzrelation eine reflexive, symmetrische und transitive Relation sein. Stimmt, laut Vorraussetzung ist sie schon reflexiv und transitiv.
Weil wir aber zeigen sollen, dass es eine Äquivalenzrelation ist würde ich sagen, dass ich erst zeigen muss, dass sie auch symmetrisch ist. Leider weiß ich nicht wie das geht.
Die Definition für Symmetrie lautet auf jeden Fall für alle x,y [mm] \in [/mm] M aus xRy und yRx.
Kann ich dann sagen:
Seien x,y [mm] \in [/mm] A mit x [mm] \equiv [/mm] y, d.h. xRy [mm] \wedge [/mm] yRx. Es gilt also auch xRy => yRx.

Wie kann ich yRx => xRy zeigen?

Bezug
                        
Bezug
Äquvalenzrelation: Antwort
Status: (Antwort) fertig Status 
Datum: 09:21 Mo 23.01.2012
Autor: fred97


> Hmmm also nach unsere Definition muss eine
> Äquivalenzrelation eine reflexive, symmetrische und
> transitive Relation sein. Stimmt, laut Vorraussetzung ist
> sie schon reflexiv und transitiv.
> Weil wir aber zeigen sollen, dass es eine
> Äquivalenzrelation ist würde ich sagen, dass ich erst
> zeigen muss, dass sie auch symmetrisch ist. Leider weiß
> ich nicht wie das geht.
>  Die Definition für Symmetrie lautet auf jeden Fall für
> alle x,y [mm]\in[/mm] M aus xRy und yRx.
>  Kann ich dann sagen:
> Seien x,y [mm]\in[/mm] A mit x [mm]\equiv[/mm] y, d.h. xRy [mm]\wedge[/mm] yRx. Es
> gilt also auch xRy => yRx.

wozu ?


>  
> Wie kann ich yRx => xRy zeigen?

Das sollt Du nicht zeigen.

Du sollst zeigen, dass aus x $ [mm] \equiv [/mm] $ y folgt:  y $ [mm] \equiv [/mm] $ x

Wir haben also:  xRy [mm] \wedge [/mm] yRx.

Zeigen sollst Du: yRx [mm] \wedge [/mm] xRy.


Ist das schwer ?

FRED


Bezug
                                
Bezug
Äquvalenzrelation: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:45 Di 24.01.2012
Autor: Winny

Wie man sieht fällt mir das leider sehr schwer...
Ich weiß leider nicht was ich mit diesem xRy [mm] \wedge [/mm] yRx machen soll.
Okay, Reflexivität, Symmetrie und Transitivität nachweisen.
nehme ich mir dann ein a [mm] \in [/mm] xRy [mm] \wedge [/mm] yRx für die Transitivität?
Ich komme hier nicht weiter..

Bezug
                                        
Bezug
Äquvalenzrelation: Antwort
Status: (Antwort) fertig Status 
Datum: 11:00 Di 24.01.2012
Autor: fred97


> Wie man sieht fällt mir das leider sehr schwer...
>  Ich weiß leider nicht was ich mit diesem xRy [mm]\wedge[/mm] yRx
> machen soll.
>  Okay, Reflexivität, Symmetrie und Transitivität
> nachweisen.
>  nehme ich mir dann ein a [mm]\in[/mm] xRy [mm]\wedge[/mm] yRx für die
> Transitivität?

Unsinn.

Wir waren uns doch einig, dass nur noch die Symmetrie zu zeigen ist.

Also nochmal:

Wir haben :  xRy $ [mm] \wedge [/mm] $ yRx.

Zeigen sollst Du: yRx $ [mm] \wedge [/mm] $ xRy.

FRED

>  Ich komme hier nicht weiter..


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de