www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Maßtheorie" - Äußeres Hausdorffmaß
Äußeres Hausdorffmaß < Maßtheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Maßtheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Äußeres Hausdorffmaß: Korrektur/Tipp
Status: (Frage) überfällig Status 
Datum: 23:19 Sa 27.10.2012
Autor: Lustique

Eingabefehler: "\left" und "\right" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Aufgabe
a) Sei $\Omega$ eine Menge. Zu $\varepsilon>0$ sei $\mu_\varepsilon\colon \mathcal{P}(\Omega)\to[0, \infty]$ ein äußeres Maß. Dann ist

$\mu\colon \mathcal{P}(\Omega)\to[0, \infty], \quad \mu(E)=\underset{\varepsilon>0}{\sup}\,\mu_\varepsilon(E)$ für alle $E\subseteq \Omega$

ein äußeres Maß. Wir schreiben $\mu = \underset{\varepsilon>0}{\sup}\,\mu_\varepsilon$.

b) Es seien $\alpha > 0$, $\epsilon > 0$. WIr definieren die Mengenfunktion $\mathcal{H}_\alpha^\varepsilon\colon \mathcal{P}(\mathbb{R}^d)\to[0, \infty]$ durch

$\mathcal{H}_\alpha^\varepsilon(E)=\inf\left\{\sum_{j=1}^\infty \left(\mathrm{diam}(F_j)\right)^\alpha:F_j\subseteq\mathbb{R}^d \text{ mit } \mathrm{diam}(F_j)\leqslant \varepsilon \text{ für alle } j\in\mathbb{N} \text{ und } E\subseteq\bigcup_{j=1}^\infty F_j\right\}$.  

Zeigen Sie, dass $\mathcal{H}_\alpha^\varepsilon$ äußeres Maß ist. Zeigen Sie auch, dass $\mathcal{H}_\alpha = \underset{\varepsilon>0}{\sup}\,\mathcal{H}_\alpha^\varepsilon$ ein äußere Maß ist.

Bemerkung: $\mathcal{H}_\alpha$ heißt das $\alpha$-dimensionale äußere Hausdorffmaß.


Hallo zusammen, ich brauche mal wieder etwas Unterstützung bei einer Aufgabe. Ich habe, oder zumindest bin ich mir da relativ sicher, Teil a) schon richtig gelöst, bei b) bin ich mir aber bei einigen Stellen nicht sicher:

Zu zeigen ist ja in b) zunächst:

i) $\mathcal{H}_\alpha^\varepsilon(\emptyset)=0$

ii) $A\subseteq B\subseteq \mathbb{R}^d \Rightarrow \mathcal{H}_\alpha^\varepsilon(A)\leqslant \mathcal{H}_\alpha^\varepsilon(B)$

iii) Für $A_1, A_2, \dotsc \in\mathcal{P}(\mathbb{R^d})$ gilt $\mathcal{H}_\alpha^\varepsilon\left(\bigcup_{k=1}^\infty A_k\right)\leqslant \sum_{k=1}^\infty \mathcal{H}_\alpha^\varepsilon(A_k)$

Mein Beweisversuch:

i) Es ist $\emptyset\in\mathbb{R}^d$ mit $\mathrm{diam}(\emptyset)=0\leqslant \varepsilon$. Sei $F_j = \emptyset$ für alle $j\in\mathbb{N}\Rightarrow \emptyset\subseteq\bigcup_{j=1}^\infty F_j $ und $\sum_{j=1}^\infty\left(\mathrm{diam}(F_j)\right)^\alpha\right) = \sum_{j=1}^\infty 0^\alpha = 0$.

ii) Seien $A\subseteq B\subseteq \mathbb{R}^d$ Mengen. Sei $\{F_j\}_{j\in\mathbb{N}}$ das Mengensystem, dass $B$ so überdeckt, wie für $\mathcal{H}_\alpha^\varepsilon(B)$ nach Definition (ich wusste nicht, wie ich das anders ausdrücken kann, aber ich hoffe man erkennt was gemeint ist; für Vorschläge, was diese Formulierung angeht, bin ich natürlich auch dankbar! :)). Dann überdeckt $\{F_j\}_{j\in\mathbb{N}}$ auch $A$, also folgt $A\subseteq B\subseteq \bigcup_{j=1}^\infty F_j$, und damit $\mathcal{H}_\alpha^\varepsilon(B)\geqslant\mathcal{H}_\alpha^\varepsilon(A)$.

(Muss ich da noch was zu schreiben, oder ist, sozusagen, klar, dass das gilt, da $\leqslant$ ja Gleichheit nicht ausschließt?)

iii) Seien $A_1, A_2, \dotsc \in \mathcal{P}(\mathbb{R}^d)$. Sei nun $\mathcal{H}_\alpha^\varepsilon(A_i)=\inf\left\{\sum_{j=1}^\infty \left(\mathrm{diam}(F_{ij})\right)^\alpha:F_{ij}\subseteq\mathbb{R}^d \text{ mit } \mathrm{diam}(F_{ij})\leqslant \varepsilon \text{ für alle } j\in\mathbb{N} \text{ und } A_i\subseteq\bigcup_{j=1}^\infty F_{ij}\right\}$. Dann ist $\bigcup_{i=1}^\infty A_i \subseteq \bigcup_{i, j=1}^\infty F_{ij}$ und

$\mathcal{H}_\alpha^\varepsilon\left(\bigcup_{i=1}^\infty A_i \right)=\inf\left\{\sum_{j=1}^\infty \left(\mathrm{diam}(F_{ij})\right)^\alpha:F_{ij}\subseteq\mathbb{R}^d \text{ mit } \mathrm{diam}(F_{ij})\leqslant \varepsilon \text{ für alle } i, j\in\mathbb{N} \text{ und } \bigcup_{i=1}^\infty A_i \subseteq\bigcup_{i,j=1}^\infty F_{ij}\right\}$.

Da für Mengen $A, B$ gilt $\inf(A+B) = \inf A + \inf B$, folgt

$\sum_{i=1}^\infty \mathcal{H}_\alpha^\varepsilon(A_i)\geqslant \mathcal{H}_\alpha^\varepsilon\left(\bigcup_{i=1}^\infty A_i \right)$.


Sind die Beweisschritte so in Ordnung (höchstwahrscheinlich nicht, relativ sicher bin ich mir nur bei i)), verbesserungswürdig aber im Grunde richtig, oder kompletter Quatsch? Könnt ihr mir hier helfen?

Stimmt es übrigens, dass "$\mathcal{H}_\alpha = \underset{\varepsilon>0}{\sup}\,\mathcal{H}_\alpha^\varepsilon$ ist äußeres Maß" direkt aus a) folgt, oder ist da noch mehr zu tun?

        
Bezug
Äußeres Hausdorffmaß: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:20 Di 30.10.2012
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Maßtheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de