www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integration" - äußeres Integral/innere Ableit
äußeres Integral/innere Ableit < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

äußeres Integral/innere Ableit: ung-->Wann anwendbar?
Status: (Frage) beantwortet Status 
Datum: 21:46 Di 28.02.2006
Autor: Mirjam99

Hallo,
weiß jemand, wann ich die Integrationsregel "äußeres Integral/innere Ableitung" anwenden darf?

Liebe Grüße,
Miriam

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
äußeres Integral/innere Ableit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:21 Di 28.02.2006
Autor: Yuma

Hallo Mirjam,

ich bin immer interessiert an "neuen" Integrationsregeln. ;-)

Kannst du uns vielleicht erklären, was genau es mit dieser Regel auf sich hat und/oder mal eine Aufgabe zeigen, bei der man sie anwenden kann?

MFG,
Yuma

Bezug
                
Bezug
äußeres Integral/innere Ableit: Beispiel
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:31 Mi 01.03.2006
Autor: Mirjam99

Hallo Yuma,

z.B. bei Stammfunktion von  [mm] \wurzel[2]{x+1} [/mm] = [mm] (x+1)^\bruch{1}{2} [/mm]
da kann ich doch das "äußere" Integral bilden  [mm] \bruch{2}{3}*(x+1)^ \bruch{3}{2} [/mm] und einfach durch die "innere" Ableitung (die ja in diesem Fall 1 ist) teilen.
Damit erspare ich mir die Substitution (ok, wäre jetzt hier auch nicht so aufwändig, aber bei anderen Funktionen kann das ne ziemliche Zeitersparnis sein.)
Ich weiß leider nur nicht, WANN ich diese regel anwenden darf...immer geht das nämlich nicht.(Hab mal gehört, daß die Innenfunktion dazu linear sein muss...)
Wäre nett, wenn jemand was dazu schreiben könnte.
Liebe Grüße,
Mirjam

Bezug
        
Bezug
äußeres Integral/innere Ableit: innere Funktion = linear
Status: (Antwort) fertig Status 
Datum: 10:14 Mi 01.03.2006
Autor: Roadrunner

Hallo Miriam!


Du hast Dir die Antwort weiter unten bereits selber gegeben, denn das stimmt, was Du da gehört hast ;-) ...


Damit Du mit dieser "vereinfachter Substitutionsregel" erbeiten darfst, muss die innere Funktion linear sein, d.h. diese hat die Gestalt [mm] $a*x^{\blue{1}}+b$ [/mm] .


Gruß vom
Roadrunner


Bezug
                
Bezug
äußeres Integral/innere Ableit: immer nur linear
Status: (Frage) beantwortet Status 
Datum: 00:30 Sa 04.03.2006
Autor: Mirjam99

Hallo Roadrunner,

aber was ist mit der Funktion [mm] e^{x^2} [/mm] ?
Die integriere ich doch auch  [mm] \bruch{1}{2x}*e^{x^2} [/mm]  , oder?
Obwohl die Innenfunktion nicht linear ist...
LG,
Miriam

Bezug
                        
Bezug
äußeres Integral/innere Ableit: Nein!
Status: (Antwort) fertig Status 
Datum: 02:39 Sa 04.03.2006
Autor: Roadrunner

Hallo Miriam!


> aber was ist mit der Funktion [mm]e^{x^2}[/mm] ?
> Die integriere ich doch auch  [mm]\bruch{1}{2x}*e^{x^2}[/mm]  , oder?

[notok] Nein, mache mal die Probe und leite Deine vermeintliche Stammfunktion ab; da müsste ja wieder die Ausgangsfunktion entstehen.

Die Funktion $y \ = \ [mm] e^{x^2}$ [/mm] ist nicht elementar zu integrieren.


Gruß vom
Roadrunner


Bezug
        
Bezug
äußeres Integral/innere Ableit: etwas formaler
Status: (Antwort) fertig Status 
Datum: 10:45 Mi 01.03.2006
Autor: Yuma

Hallo Mirjam,

Roadrunner hat die Antwort schon gegeben - ich möchte es noch etwas formaler ausdrücken:

Nehmen wir an, du hast zwei Funktionen [mm] $f,g:\IR\to\IR$, [/mm] wobei $f(x)$ die Stammfunktion $F(x)$ hat, und [mm] $g'(x)\not=0$ [/mm] für alle [mm] $x\in\IR$. [/mm] Sei $h(x):=f(g(x))$ (nur zur Abkürzung).

Dann behauptest du: [mm] $H(x):=\int [/mm] f(g(x))\ [mm] dx=\bruch{1}{g'(x)}\cdot [/mm] F(g(x))$.

Überprüfen wir die Behauptung, indem wir die rechte Seite ableiten:
Wir haben an $g(x)$ (noch) keine Bedingungen gestellt, also wäre das nach der Produktregel

[mm] $H'(x)=-g''(x)\cdot\bruch{1}{(g'(x))^{2}}\cdot F(g(x))+\bruch{1}{g'(x)}\cdot g'(x)\cdot [/mm] f(g(x))$

Du merkst, deine Behauptung $H'(x)=h(x)$ gilt (für beliebiges $f$) genau dann, wenn $g''(x)=0$ für alle [mm] $x\in\IR$. [/mm]
$g'(x)$ muss dazu eine konstante Funktion ungleich Null sein: [mm] $g'(x)=c\not=0$ [/mm] für alle [mm] $x\in\IR$. [/mm]
Und das heißt wiederum, dass $g(x)$ die Gestalt $g(x)=cx+d$ haben muss, also eine lineare Funktion sein muss.

Alles klar? Frag ansonsten bitte nochmal nach! :-)

MFG,
Yuma

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de