www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra / Vektorrechnung" - affine Abbildungen
affine Abbildungen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

affine Abbildungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:00 Fr 11.05.2012
Autor: alpenmilch

Ich muss mich für die Abiturprüfung mit dem Thema affine Abbildungen befassen, doch leider habe ich noch nie im Leben davon gehört!
Was genau versteht man denn unter "affine Abbildungen im xy-Koordinatensystem" ? Angeblich gibt es drei Möglichkeiten, sie dazustellen. Leider habe ich nirgendswo was dazu gefunden.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
affine Abbildungen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:11 Fr 11.05.2012
Autor: Stoecki

eine affine abbildung ist eine lineare abbildung, bei der zusätzlich noch um einen vektor verschoben wird. sagen wir du hast einen vektor [mm] \vektor{x \\ y} [/mm] gegeben. dann hätte eine affine abblidung die form
f(x,y) = [mm] \pmat{ a_{11} & a_{12} \\ a_{21} & a_{22} } [/mm] * [mm] \vektor{x \\ y} [/mm] + [mm] \vektor{b_1 \\ b_2} [/mm]
ich weiß jetzt nicht, ob das eine andere darstellung ist, aber wenn man das auflöst bekommen man eine gleichung für die neuen koordinaten raus. also:
[mm] \vektor{f_1(x,y) \\ f_2(x,y)} [/mm] = [mm] \vektor{a_{11} * x + a_{12}*y + b_1 \\ a_{21} * x + a_{22}*y + b_2} [/mm]

ich hoffe das hilft dir weiter.

gruß bernhard

Bezug
        
Bezug
affine Abbildungen: Antwort
Status: (Antwort) fertig Status 
Datum: 07:58 Sa 12.05.2012
Autor: angela.h.b.


> Ich muss mich für die Abiturprüfung mit dem Thema affine
> Abbildungen befassen, doch leider habe ich noch nie im
> Leben davon gehört!

Hallo,

die erste Adresse wäre natürlich der Lehrer, jedenfalls sofern Du eine Schule besuchst.

> Was genau versteht man denn unter "affine Abbildungen im
> xy-Koordinatensystem" ?

> Stoecki hat Dir ja schon etwas dazu gesagt.

Ich gehe davon aus, daß Ihr in der Schule zumindest vorwiegend einen Spezialfall der affinen Abbildungen betrachtet habt, nämlich die linearen Abbildungen.
Möglicherweise ist Dir dieser Begriff vertraut, und Du hast einen Anhaltspunkt, wo in Deinen Unterlagen bzw. Deinem Schulbuch Du nachschlagen mußt.

>Angeblich gibt es drei

> Möglichkeiten, sie dazustellen. Leider habe ich nirgendswo
> was dazu gefunden.

Ja.

Lineare Abbildungen kannst Du ausdrücken

- durch die Funktionsgleichung, etwa [mm] f(\vektor{x\\y})=\vektor{1x+2y\\3x+4y}, [/mm]

- durch die Angabe der Abbildungsmatrix, im Beispiel wäre dies die Matrix [mm] A=\pmat{1&2\\3&4}, [/mm] denn [mm] f(\vektor{x\\y})=pmat{1&2\\3&4}*\vektor{x\\y} [/mm]

- durch die Angabe der Funktionswerte der Vektoren einer Basis, etwa der der Standardbasis, im Beispiel [mm] f(\vektor{1\\0})=\vektor{1\\3}, f(\vektor{0\\1})=\vektor{2\\4}. [/mm]

Ich hoffe, daß Du mit diesen Hinweisen dem, was Du lernen mußt, auf die Spur kommst.

Wenn noch nicht alles geklärt ist, stell bitte nicht wieder einfach die Frage  auf "unbeantwortet", sondern stell eine Rückfrage, in welcher Du die Unklarheiten formulierst.

LG Angela

>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de