affine Ebene < Skalarprodukte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 18:14 Di 22.11.2011 | Autor: | anabiene |
Aufgabe | hey! es ist eine affine ebene E gegeben: [mm] \vec{a}+r\vec{v}+s\vec{w} [/mm] mit [mm] r,s\in \IR, \vec{a},\vec{v},\vec{w} \in \IR^3
[/mm]
und die definition: für ein [mm] \vec{c} \in \mathbb R^3 [/mm] gilt [mm] \vec{c} \perp [/mm] E wenn [mm] \vec{c}\cdot \vec{v}=0~\wedge~ \vec{c}\cdot \vec{w}=0.
[/mm]
Ich soll zeigen, dass diese definition nicht von der speziellen darstellung des richtungsraumes [mm] r\vec{v}+s\vec{w} [/mm] von E abhängt. |
[mm] \vec{v} [/mm] und [mm] \vec{w} [/mm] sind ja lin. unabh., weil sie die richtungsvektoren sind. ich hab mir gedacht ich stelle einen weiteren richtungsvektor [mm] \vec{u} [/mm] als linearkombination von [mm] \vec{v} [/mm] und [mm] \vec{w} [/mm] dar. Dann wollte ich das gleichungssystem aus
[mm] \vec{v} \cdot \vec{c}=0
[/mm]
[mm] \vec{w} \cdot \vec{c}=0 [/mm] lösen, was allgemein aber schwierig ist.
bin ich da auf dem richtigen weg? :(
|
|
|
|
> hey! es ist eine affine ebene E gegeben:
> [mm]\vec{a}+r\vec{v}+s\vec{w}[/mm] mit [mm]r,s\in \IR, \vec{a},\vec{v},\vec{w} \in \IR^3[/mm]
>
> und die definition: für ein [mm]\vec{c} \in \mathbb R^3[/mm] gilt
> [mm]\vec{c} \perp[/mm] E wenn [mm]\vec{c}\cdot \vec{v}=0~\wedge~ \vec{c}\cdot \vec{w}=0.[/mm]
>
> Ich soll zeigen, dass diese definition nicht von der
> speziellen darstellung des richtungsraumes
> [mm]r\vec{v}+s\vec{w}[/mm] von E abhängt.
> [mm]\vec{v}[/mm] und [mm]\vec{w}[/mm] sind ja lin. unabh., weil sie die
> richtungsvektoren sind. ich hab mir gedacht ich stelle
> einen weiteren richtungsvektor [mm]\vec{u}[/mm] als
> linearkombination von [mm]\vec{v}[/mm] und [mm]\vec{w}[/mm] dar. Dann wollte
> ich das gleichungssystem aus
> [mm]\vec{v} \cdot \vec{c}=0[/mm]
> [mm]\vec{w} \cdot \vec{c}=0[/mm] lösen,
> was allgemein aber schwierig ist.
>
> bin ich da auf dem richtigen weg? :(
Eigentlich schon.
Du musst zeigen, dass [mm] \vec{c} \perp [/mm] E genau dann, wenn [mm] \vec{c}*\vec{u}=0 [/mm] für jeden beliebigen Richtungsvektor von E.
Dazu kannst du ein solches [mm] \vec{u} [/mm] als Linearkombination von [mm] \vec{v} [/mm] und [mm] \vec{w} [/mm] darstellen.
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 18:34 Di 22.11.2011 | Autor: | anabiene |
gut hab ich gemacht: [mm] \vec{u}=\vektor{\lambda v_1+ \mu w_1 \\ \lambda v_2+ \mu w_2 \\ \lambda v_3+ \mu w_3}
[/mm]
aber wie löse ich das gleichungssystem [mm] \pmat{ v_1 & v_2 & v_3 & | 0\\ w_1 & w_2 & w_3 & | 0} [/mm] mit [mm] c_1,c_2,c_3 [/mm] als "unbekannte"?
|
|
|
|
|
> gut hab ich gemacht: [mm]\vec{u}=\vektor{\lambda v_1+ \mu w_1 \\ \lambda v_2+ \mu w_2 \\ \lambda v_3+ \mu w_3}[/mm]
>
> aber wie löse ich das gleichungssystem [mm]\pmat{ v_1 & v_2 & v_3 & | 0\\ w_1 & w_2 & w_3 & | 0}[/mm]
> mit [mm]c_1,c_2,c_3[/mm] als "unbekannte"?
Das ist viel zu kompliziert. Du schreibst einfach [mm] \vec{u}=\lambda\vec{v}+\mu\vec{w} [/mm] und rechnest nach, dass [mm] \vec{u}*\vec{c}=0 [/mm] gilt.
|
|
|
|