www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - affiner Unterraum (2)
affiner Unterraum (2) < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

affiner Unterraum (2): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 06:43 Mo 19.06.2006
Autor: MasterEd

Aufgabe
Eine Ebene im [mm] $R^3$ [/mm] ist definiert als eine Teilmenge [mm] $E\subset R^3$ [/mm] mit folgender Eigenschaft:
Es gibt [mm] $a_1,a_2,a_3,b\in [/mm] R$ mit [mm] $(a_1,a_2,a_3)\neq [/mm] (0,0,0)$ derart, dass
[mm] $$E=\{(x_1,x_2,x_3)\in R^3|a_1x_1+a_2x_2+a_3x_3=b\}$$ [/mm]
gilt.

Man soll nun einen Vektor [mm] $v_0\in R^3$ [/mm] und einen Untervektorraum $U$ in [mm] $R^3$ [/mm] finden, so dass [mm] $E=v_0+U$ [/mm] gilt und damit $E$ als affiner Unterraum von [mm] $R^3$ [/mm] realisiert ist.

Ich verstehe das irgendwie alles nicht mit diesem "affin" und so und weiß nicht wie man diese Dinger "findet".

Vielen Dank für Eure Hilfe. Ich habe diese Frage nirgends sonst gestellt.

        
Bezug
affiner Unterraum (2): lösungsansatz
Status: (Antwort) fertig Status 
Datum: 10:05 Mo 19.06.2006
Autor: just-math

Hallo,

ich würd ja versuchen, einen Vektor [mm] u_0 [/mm] so zu finden, dass [mm] (a_1,a_2,a_3)\cdot u_0=b [/mm] gilt, dann kannst Du damit doch leicht die
Aufgabe lösen.

Viele Grüsse

just-math

Bezug
                
Bezug
affiner Unterraum (2): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:13 Mo 19.06.2006
Autor: MasterEd

Aufgabe
Danke für die schnelle Antwort!

Meinst Du mit $ [mm] (a_1,a_2,a_3)\cdot u_0=b [/mm] $ das Skalarprodukt? Ich meine,
$ [mm] (a_1,a_2,a_3)$ [/mm] ist doch ein Vektor oder?

Bezug
                        
Bezug
affiner Unterraum (2): Antwort
Status: (Antwort) fertig Status 
Datum: 14:19 Mo 19.06.2006
Autor: Jan_Z

Hallo Ed,
zunächst einmal zum "affinen Unterraum": Was ein Unterraum des [mm] $\mathbb{R}^3$ [/mm] ist, weißt du, oder? Ebenen durch den Ursprung sind z.B. zweidimensionale Unterräume. Was sind nun aber Ebenen, die nicht unbedingt durch den Ursprung gehen? Solche nennt man "affine Unterräume". Ein solcher affiner Unterraum, der den Ursprung nicht enthält ist natürlich selbst kein Unterraum, entsteht aber aus einem Unterraum $U$ durch Verschiebung um einen Vektor [mm] $v_0$, [/mm] daher die Schreibweise [mm] $v_0+U$. [/mm]
Vielleicht kennst du noch aus der Schule die Parameterform einer Ebene?
Eine solche ist von der Form [mm] $E:v=v_0+\lambda_1v_1+\lambda_2v_2$ [/mm] mit Vektoren [mm] $v_1,v_2$. [/mm] In diesem Fall wäre $U$ der von [mm] $v_1,v_2$aufgespannteUnterraum [/mm] und [mm] $v_0$ [/mm] der "Verschiebungsvektor".
Was du nun machen musst, ist von der Koordinatenform auf die Parameterform zu kommen. Der Tipp von "just-math" war der, zunächsteinmal Vektoren zu suchen, die auf der Ebene liegen, d.h. die die Koordinatengleichung erfüllen.
Hilft dir das weiter?
Gruß, Jan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de