www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Vektoren" - alle senkrechten vektoren R3
alle senkrechten vektoren R3 < Vektoren < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

alle senkrechten vektoren R3: Erklärung...erst halb gelöst
Status: (Frage) beantwortet Status 
Datum: 14:24 Sa 13.02.2010
Autor: Loewenzahn

Aufgabe
bestimmen sie ein( bzw. alle v3 für die v3 senkrecht auf v1 steht
v1= [mm] \vektor{1 \\ -1 \\ 3} [/mm]
Lösung:
[mm] a*\vektor{-3 \\ 0 \\ 1}+b*\vektor{1 \\ 1 \\ 0}= [/mm] v3, a&b bel.reell


laut dem rechenweg von "leduart" in dem thread "senkrechter vektor gesucht" (ich wusste nicht, wie man das verlinkt?)
habe ich mir einen senkrecht stehenden vektor gebildet, indem ich das skalarprodukt der beiden vektoren berechnet habe und erst z=0 beliebig gewählt habe und dann y=x=1 gewählt.
laut leduart ist dann (1/1/0) ein senkrechter vektor.

meine frage ist, wieso ist denn nun die lösung in dieser form angegeben? ich habe also erst die hälfte der lösung gefunden... wie komme ich auf den "ersten" der beiden vektoren ????

und ist der grund, warum nicht einfach v3= a*((1/1/0) als Lösung gilt der, dass ich dann die Tatsache nicht rechnung trage, dass es ja zwei weitere koordinatenachsen gibt (3 raumrichtungen) und v3 somit garnicht fesfgelegt wäre...?

danke,
LZ


        
Bezug
alle senkrechten vektoren R3: Antwort
Status: (Antwort) fertig Status 
Datum: 14:36 Sa 13.02.2010
Autor: angela.h.b.


> bestimmen sie ein( bzw. alle v3 für die v3 senkrecht auf
> v1 steht
>  v1= [mm]\vektor{1 \\ -1 \\ 3}[/mm]
>  Lösung:
>  [mm]a*\vektor{-3 \\ 0 \\ 1}+b*\vektor{1 \\ 1 \\ 0}=[/mm] v3, a&b
> bel.reell
>  
>
> laut dem rechenweg von "leduart" in dem thread "senkrechter
> vektor gesucht"


Hallo,

meine Lust, diesen Thread zu suchen, ist nur schwach ausgeprägt, wenn Du Dich auf diesen beziehen möchtest, kannst Du doch Deine Frage dort anhängen. (?)


Du suchst also all diejenigen Vektoren [mm] \vektor{x\\y\\z}, [/mm] für welche gilt

[mm] \vektor{1 \\ -1 \\ 3}*\vektor{x\\y\\z}=0 [/mm]

<==>

x-y+3z=0.

Welche Vektoren [mm] \vektor{x\\y\\z} [/mm] lösen diese Gleichung?

Alle, für welche x=y-3z gilt.

Man kann also y und z beliebig wählen, und muß dann x=y-3z nehmen.

Also

z=t
y=s  mit s,t [mm] \in \IR [/mm] beliebig

x=y-3z=s-3t.

Damit haben die Lösungsvektoren die Gestalt

[mm] \vektor{x\\y\\z}=\vektor{s-3t\\s\\t}=s*\vektor{1\\1\\0} [/mm] + [mm] t*\vektor{-3\\0\\1} [/mm] mit [mm] r,s\in \IR. [/mm]

Alle Vektoren dieser Bauart sind senkrecht zu Deinem Vektor [mm] v_1, [/mm] und wenn Du gut aufgepaßt hast, dann erkennst Du jetzt, daß sie eine Ebene bilden, nämlich die Ebene durch den Ursprung, welche senkrecht ist zu [mm] v_1. [/mm]

Gruß v. Angela




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de