www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Steckbriefaufgaben" - analysis
analysis < Steckbriefaufgaben < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Steckbriefaufgaben"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

analysis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:14 Di 19.02.2008
Autor: Teenie88w

Aufgabe
das büro erhält einen auftrag, zu berechen, wie viel [mm] m^3 [/mm] sand für die rampen (ohne Seitenböschung) angeschüttet werden müssen bei folgenden maßen

Brückenlänge: 20m

Rampenlänge:jeweils 90m

Straßenbreite: durchgängig 10m

Die Berechnung im Büro erfolgt mittels der Näherungsfunktion N(x)= 0,0001 [mm] x^4 [/mm] -0,02 [mm] x^2 [/mm] +1

a.)

Leiten Sie N(X) aus folgenden Bedingungen her:

Eine ganzrationale Funktion 4. Grades ist achsensymmetrisch zur y-Achse, verläuft durch (0/1) und hat in (10/0) einen Tiefpunkt...


Guten Abend erstmal ;-)

Ich frage mich,was ich hier machen soll.... Soll ich eine " Kurvendiskussion rückwärts" durchführen??

Wie gehe ich das ganze an???


Würde mich aber eine aussagekräftige Antwort freuen....

Liebe Grüße

        
Bezug
analysis: Antwort
Status: (Antwort) fertig Status 
Datum: 20:25 Di 19.02.2008
Autor: steppenhahn

Du hast N(x) schon gegeben, sollst es aber noch mal bestimmen; du weißt nur Folgendes über N(x):

- Ganzrationale Funktion 4. Grades --> N(x) = [mm] ax^{4}+bx^{3}+cx^{2}+dx+e [/mm]
- Achsensymmetrisch zur y-Achse --> N(x) = [mm] ax^{4}+cx^{2} [/mm] +e
   (Ungerade Potenzen fallen weg!)
- N(x) verläuft durch (0|1) --> N(0) = 1
   (Wenn die Funktion N(x) durch den Punkt (0|1) verlaufen soll,
   so muss 1 rauskommen, wenn ich 0 einsetze!)
-N(x) hat Tiefpunkt in (10|0)
     --> N'(10) = 0
     (Weil das Kriterium für einen Extrempunkt an einer Stelle x ist,#
     dass die Ableitung an dieser Stelle x gleich 0 ist!)
     --> N(10) = 0
     (Wenn die Funktion N(x) durch den Punkt (10|0) verlaufen soll,
     (weil sie ja dort einen Tiefpunkt hat!) so muss 0 rauskommen,
     wenn ich 10 einsetze!)

Und aus diesen Informationen sollst du nun deine Funktion zusammenbasteln. Du weißt also aufgrund der ersten beiden Angaben, dass deine Funktion die Gestalt

N(x) = [mm] ax^{4}+cx^{2} [/mm] +e

hat und weißt zusätzlich noch folgende drei Bedingungen:

N(0) = 1
N'(10) = 0
N(10) = 0

Wenn du die linke Seite jeweils ausschreibst (also wirklich die Werte für x einsetzt, erhältst du ein Gleichungssystem, dessen Lösungen dir dann die Parameter a,c,e liefert!

Bezug
                
Bezug
analysis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:29 Di 19.02.2008
Autor: Teenie88w

Ok..Vielen Dank... ;-)

Da heisst ich muss nur die Schritte mache,die du mir angegeben hast und die Aufgabe ist erfüllt????

Liebe Grüße ;-)

Bezug
                        
Bezug
analysis: Antwort
Status: (Antwort) fertig Status 
Datum: 20:44 Di 19.02.2008
Autor: steppenhahn

Du müsstest aus den dir gegebenen Informationen herauslesen können, wie die Funktion N(x) beschaffen ist, also dass N(x) = [mm] ax^{4}+cx^{2}+e [/mm] so aussieht. Dann müsstest du mit Hilfe der Informationen zu den Punkten auf die drei Gleichungen

N(0) = 1
N'(10) = 0
N(10) = 0

schließen können. Und nun entsteht ein Gleichungssystem, wenn du die linke Seite ausschreibst; das kannst du in den Taschenrechner eingeben.

Du musst verstehen... Die Lösung steht schon da, das heißt Sinn der Aufgabe ist es nicht, die Funktion einfach nochmal hinzuschreiben sondern die Zwischenschritte sollten bei einer Musterlösung schon da sein. (Also die obigen Gleichungen, dann das Gleichungssystem, dann die Lösungen des Gleichungssystems und nochmal die ganze Funktion als Ergebnis)

Und dann hast du die Aufgabe erfüllt :-)

Poste doch mal das Gleichungssystem, das aus den obigen drei Gleichungen entsteht :-)



Bezug
                                
Bezug
analysis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:49 Di 19.02.2008
Autor: Teenie88w

könnte bitte jemand nochmal weiter helfen???

das prinzip habe ich verstanden, nur kann ich es nicht umsetzen.. ;-(


Liebe Grüße

Bezug
                                        
Bezug
analysis: Antwort
Status: (Antwort) fertig Status 
Datum: 21:57 Di 19.02.2008
Autor: steppenhahn

Siehe PM, die Lösungen kannst du ja hier nochmal posten, damit der Thread erfolgreich abgeschlossen wird!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Steckbriefaufgaben"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de