www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Komplexe Analysis" - analytisch und holomorph
analytisch und holomorph < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

analytisch und holomorph: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:35 Fr 03.07.2009
Autor: Mathec

Hallo Leute!
Ich habe mal wieder ein kleines Verständnisproblem:
Ich habe gerade in meinem Skript gelesen, dass holomorph und analytisch äquivalent sind. Eine Funktion f ist in a analytisch, wenn f um a lokal in eine Potenzreihe entwickelbar ist, d.h. wenn um a eine offene Umgebung konstruiert werden kann, die noch vollständig im Holomorphiebereich von f liegt, so dass für alle z aus dieser Kreisscheibe die Potenzreihe konvergiert. Jetzt frage ich mich, wenn jede holomorphe Funktion analytisch ist, also um jeden Punkt des Holomorphiebereichs in eine konvergente Potenzreihe entwickelbar, was ist dann bei Funktionen auf dem Rand des Bereichs??Denn da existiert ja keine offene Umgebung eines Punktes,die noch vollständig im Holomorphiebereich enthalten ist..oder etwa doch??? Ich hoffe, ihr könnt mir helfen bzw. habt mein Problem verstanden, hoffe, ich habe mich nicht zu ungeschickt ausgedrückt!!!
Danke für eure Hilfe!
Mathec

        
Bezug
analytisch und holomorph: Antwort
Status: (Antwort) fertig Status 
Datum: 23:15 Fr 03.07.2009
Autor: pelzig

Ja, analytisch wird halt übrlicherweise nur für Funktionen [mm] $f:D\to\IC$ [/mm] erklärt, wobei [mm] $D\subset\IC$ [/mm] offen sein muss. Dann heißt f analytisch, falls es für alle [mm] $z\in [/mm] D$ eine Potenzreihe existiert, die um z gegen f konvergiert. Auf offenen Mengen gibt es keine Randpunkte, deshalb stellt sich das Probem was du angedeutet hast gar nicht.

Reichen einem die offenen Mengen nicht, so definiert man meist [mm] $f:M\to\IC$ [/mm] heißt holomorph/analytisch, falls es eine offene Menge [mm] $O\supset [/mm] M$ gibt und eine holomorphe/analytische Funktion [mm] $g:O\to\IC$ [/mm] mit [mm] $g\big|_M=f$. [/mm] Damit gibt es keine Probleme.

Gruß, Robert

Bezug
                
Bezug
analytisch und holomorph: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:42 So 05.07.2009
Autor: Mathec

Super, habs verstanden!:-)
Vielen Dank!!!
Mathec

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de