approximation < Stochastik < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 11:01 Di 15.11.2011 | Autor: | mwieland |
Aufgabe | wir kaufen auf einem ball 100 lose der tombola. im schnitt ist nur jedes 20. los ein treffer. sei X die anzahl der gekauften treffer. in folgenden teilaufgaben ist jeweils auch die wahrscheinlichkeit maximal 4treffer (unter 100 gekauften losen) zu haben auszurechnen.
a) insgesamt gib es 500 lose. welche verteilung hat x? welche parameter hat diese verteilung?
b) warum können wir die verteilung von X durch eine binomialverteilung approximieren? mit welchen parametern?
c) können wir die binomialverteilung durch eine Poissonverteilung approximieren? wenn ja, mit welchem parameter? |
hallo alle miteinander!
ich habe hier in deisem beispiel a mit der hypergeometrischen verteilung gelöst, da es sich hier ja quasi um eine ziehung ohne zurücklegen handelt.
in meinem skript steht dann für die approximation der hypergeom. vert. durch die binomialverteilung folgende faustregel:
h(k;N,M,n) [mm] \approx b(k;n,\bruch{M}{N}), [/mm] falls N [mm] \ge [/mm] 50, [mm] \bruch{n}{N} \le \bruch{1}{10}
[/mm]
hier habe ich aber [mm] \bruch{n}{N} [/mm] = [mm] \bruch{1}{5}
[/mm]
warum sollte ich das hier approximieren können?
bitte um eure hilfe,
lg markus
|
|
|
|
Hallo mwieland,
> wir kaufen auf einem ball 100 lose der tombola. im schnitt
> ist nur jedes 20. los ein treffer. sei X die anzahl der
> gekauften treffer. in folgenden teilaufgaben ist jeweils
> auch die wahrscheinlichkeit maximal 4treffer (unter 100
> gekauften losen) zu haben auszurechnen.
>
> a) insgesamt gib es 500 lose. welche verteilung hat x?
> welche parameter hat diese verteilung?
>
> b) warum können wir die verteilung von X durch eine
> binomialverteilung approximieren? mit welchen parametern?
>
> c) können wir die binomialverteilung durch eine
> Poissonverteilung approximieren? wenn ja, mit welchem
> parameter?
>
> hallo alle miteinander!
>
> ich habe hier in deisem beispiel a mit der
> hypergeometrischen verteilung gelöst, da es sich hier ja
> quasi um eine ziehung ohne zurücklegen handelt.
>
> in meinem skript steht dann für die approximation der
> hypergeom. vert. durch die binomialverteilung folgende
> faustregel:
>
> h(k;N,M,n) [mm]\approx b(k;n,\bruch{M}{N}),[/mm] falls N [mm]\ge[/mm] 50,
> [mm]\bruch{n}{N} \le \bruch{1}{10}[/mm]
>
> hier habe ich aber [mm]\bruch{n}{N}[/mm] = [mm]\bruch{1}{5}[/mm]
>
> warum sollte ich das hier approximieren können?
>
Hier ist doch n=4 (Treffer) , N=100 (Anzahl Lose) ,
M=5 (Anzahl Treffer).
> bitte um eure hilfe,
>
> lg markus
Gruss
MathePower
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 12:03 Di 15.11.2011 | Autor: | mwieland |
ja bei de hypergeometrischen verteilung sind die parameter ja so:
N=500 -> insgesamt 500 lose
n=100 -> wir kaufen 100 lose
im schnitt jedes 20. los ein treffer -> E(x) = 5 = [mm] n*\bruch{M}{N} [/mm] => M=25
und [mm] \bruch{n}{N} [/mm] = [mm] \bruch{100}{500}=\bruch{1}{5}
[/mm]
oder?
|
|
|
|
|
Hallo mwieland,
> ja bei de hypergeometrischen verteilung sind die parameter
> ja so:
>
> N=500 -> insgesamt 500 lose
> n=100 -> wir kaufen 100 lose
> im schnitt jedes 20. los ein treffer -> E(x) = 5 =
> [mm]n*\bruch{M}{N}[/mm] => M=25
>
> und [mm]\bruch{n}{N}[/mm] = [mm]\bruch{100}{500}=\bruch{1}{5}[/mm]
>
> oder?
Es ist nicht entscheidend wieviel Lose es gibt, sondern wieviel Lose
gekauft wurden, das ist dann das N.
Gruss
MathePower
|
|
|
|
|
> Es ist nicht entscheidend wieviel Lose es gibt, sondern
> wieviel Lose
> gekauft wurden, das ist dann das N.
aber ich kann doch beim approximieren die einzelnen parameter der verteilungen komplett austauschen? da bekomm ich ja ganz ein anderes ergebnis oder?
lg markus
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 16:20 Mo 13.02.2012 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|
|
ich verstehe auch nicht ganz warum hier N unterschiedlich ist wenn man von der hypergeometrischen in die binominalverteilung approximiert.
Die hypergeometrische Verteilung hat doch n,M,N als Parameter.
Sprich das wären in diesem Beispiel ja für Punkt a:
N:Anzahl aller Lose =500 M..Anzahl der Treffer=25
N-M Nieten also 475 und n ist die Anzahl der entnommenen Kugeln also 100
Wenn ich jetzt dann zur Binominalverteilung übergehe , die mit den Parametern n, p=M/N und q=1-(M/N) die hypergeometrische annähert, warum ändern sich dann meine Parameter??
Was ich auch nicht ganz verstehe ist welche Rolle der Parameter n bei Approximation durch die Binominalverteilung spielt? N gibt doch in diesem Fall noch immer die Anzahl aller Lose an oder? das heißt ich berechne mir p= mit M/N also 25/500=0,05 und q =1-0,05 =0,95.
Dann würde ich das so verstehen dass n jetzt noch immer die ANzahl der gekauften Lose, also 100 ist und der Parameter k gibt mir an wieviel Treffer ich jetzt in dieser Anzahl n habe.
Wenn ich jetzt aber sagen würde das N nur die Zahl der gekauften Lose beschreibt also = 100 ist, wie verändert sich dann M? Immerhin kann ich ja nicht sagen dass sich alle 25 Treffer in den gekauften 100 befinden, warum also M=25??und was ich an deiner Auslegung auch nicht verstehe, warum n = 4 sein soll? gefragt wäre ja wie die w! aussieht wenn wenn der Parameter k=0,1,..4 ist, oder??
das ganze verwirrt mich irgendwie ziemlich,
obwohl ich mir sicher bin dass es nicht so schwierig sein kann!
danke
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 15:20 Do 17.11.2011 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|