www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Algorithmen und Datenstrukturen" - asymptotische Zeitkomplexität
asymptotische Zeitkomplexität < Algor.+Datenstr. < Theoretische Inform. < Hochschule < Informatik < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algorithmen und Datenstrukturen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

asymptotische Zeitkomplexität: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:59 Di 24.03.2009
Autor: Klemme

Aufgabe
Bestimmen Sie die asymptotische Zeitkomplexität der Programme

a)  int foo (int n) { // n > 0
             if (n = = 0)
                 return 1;
             else
                 return 2 * foo (n/2);
             }

b) // s ist ein Array mit n Elementen (n > 0)//
   void bar (int s [], int n){             //}
   int i, j, m, t;
   for (i=0; i<n;i++) {                   //}
       m= i;
       for ( j= i+1; j<n; j++){           //}
          if ( s[j]< s [m])
       m=j;                               //{
       }                
       t= s[i];
       s[i]=s[m];
       s[m]=t;                             //{
       }
       for (i=0; j<n; j++)
           printf ("%d", s[j];
           printf ("n");                    //{
}

Hallo,

Ich musste den Programmtext um //{ bzw. //} erweitern, da es ansonsten Fehlermeldungen gab, das diese Klammern nur paarweise auftreten dürfen.

zu a)
ich denke die Komplexität liegt hier in [mm] T(n)\in \odot [/mm] (n), da die if anweisung nur einmal ausgeführt wird
[mm] (\odot [/mm] soll hier Theta sein)

zu b)
Hier bin ich mir gar nicht sicher. [mm] T(n)\in \odot (n^{2}), [/mm] da die beiden for-Schleifen ineinander geschachtelt sind.

Es wäre nett, wenn sich das jemand mal anschauen und eventuell verbessern würde.

LG

Klemme


        
Bezug
asymptotische Zeitkomplexität: zu a)
Status: (Antwort) fertig Status 
Datum: 12:53 Do 26.03.2009
Autor: Somebody


> Bestimmen Sie die asymptotische Zeitkomplexität der
> Programme
>  
> a)  int foo (int n) { // n > 0
>               if (n = = 0)
>                   return 1;
>               else
>                   return 2 * foo(n/2);
>               }

> Ich musste den Programmtext um //{ bzw. //} erweitern, da es ansonsten Fehlermeldungen gab, das diese Klammern nur paarweise auftreten dürfen.

Du kannst statt dessen den Code in [code]...[/code] Tags einbetten: dann liefert Dir das System sogar noch kostenlos Zeilennummern dazu.


>
> zu a)
> ich denke die Komplexität liegt hier in [mm]T(n)\in \Theta[/mm] (n), da die if anweisung nur einmal ausgeführt wird.

Du hast wohl übersehen, dass der else-Zweig einen rekustiven Aufruf von foo() mit dem Argument n/2 enthält. Wie oft musst Du ein $n$ mit $|n|>0$ halbieren, bis Du auf $n=0$ bist uns somit die rekursive Verschachtelung abbrechen kann? Doch eher [mm] $\log_2(|n|)$ [/mm] mal. Damit hätte man schon eher eine Zeitkomplexität von [mm] $\Theta\big(\log(n)\big)$. [/mm]

Bemerkung: Wenn Du [mm] $\Theta$ [/mm] schreiben willst, dann schreibe einfach \Theta.

Bezug
                
Bezug
asymptotische Zeitkomplexität: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:14 Do 26.03.2009
Autor: Klemme


>  Du kannst statt dessen den Code in
> [code]...[/code] Tags einbetten: dann liefert
> Dir das System sogar noch kostenlos Zeilennummern dazu.

Danke ^^ Das ist wirklich praktisch

> Du hast wohl übersehen, dass der else-Zweig einen
> rekustiven Aufruf von foo() mit dem Argument n/2 enthält.

Ja hab ich übersehen.

> Bemerkung: Wenn Du [mm]\Theta[/mm] schreiben willst, dann schreibe
> einfach [mm][code]\Theta[/code].[/mm]  

Und nochmal danke.

LG

Klemme

Bezug
        
Bezug
asymptotische Zeitkomplexität: zu b)
Status: (Antwort) fertig Status 
Datum: 20:38 Do 26.03.2009
Autor: Somebody


> Bestimmen Sie die asymptotische Zeitkomplexität der
> Programme
>  

<snip/>

> b) // s ist ein Array mit n Elementen (n > 0)//

1:
2:      void bar (int s [], int n){
3:      int i, j, m, t;
4:      for (i=0; i<n;i++) {
5:          m= i;
6:          for ( j= i+1; j<n; j++){
7:             if ( s[j]< s [m])
8:          m=j;
9:          }                 
10:      t = s[i];
11:      s[i]=s[m];
12:      s[m]=t;
13:      }[/i][/i]
14:      for (i=0; j<n; j++)
15:          printf ("%d", s[j];
16:          printf ("n");
17:      }


> zu b)
> Hier bin ich mir gar nicht sicher. [mm]T(n)\in \Theta(n^{2}),[/mm] da die beiden for-Schleifen ineinander geschachtelt sind.

Zwar sind die beiden for-Schleifen ineinander verschachtelt, aber die innere Schleife startet in Abhängigkeit vom Wert der Laufvariablen der äusseren Schleife bei $i+1$ und macht daher jeweils nur $(n-1)-(i+1)+1=n-1-i$ Iterationen.
Insgesamt erhält man


[mm]\sum_{i=0}^{n-1}\left(\sum_{j=i+1}^{n-1} 1\right)=\sum_{i=0}^{n-1}(n-1-i)=\sum_{i=0}^{n-1}(n-1)-\sum_{i=0}^{n-1}1=n(n-1)-\frac{n(n-1)}{2}=\frac{n(n-1)}{2}[/mm]

Also möchte ich einmal behaupten, dass es sich um einen Fall von [mm] $\Theta\big(n(n-1)\big)$ [/mm] handelt, was nicht dasselbe ist wie [mm] $\Theta(n^2)$. [/mm]


Bezug
                
Bezug
asymptotische Zeitkomplexität: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:38 Do 26.03.2009
Autor: Klemme

Ok. Danke. Also kann ichs mir doch nicht so einfach machen. Deine Antwort hat mir auf jeden Fall sehr weitergeholfen.

LG

Klemme

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algorithmen und Datenstrukturen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de