www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Wahrscheinlichkeitstheorie" - bed. Erwartungswert
bed. Erwartungswert < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

bed. Erwartungswert: Verständnisproblem
Status: (Frage) beantwortet Status 
Datum: 12:05 Sa 19.05.2012
Autor: mikexx

Aufgabe
Hallo, ich versuche gerade zu verstehen, wie man allgemein bedingte Erwartungswerte und bedingte Wahrscheinlichkeiten definiert.

In der allgemeinen Theorie bedingt man dabei - glaube ich herausgefunden zu haben - entweder auf Unter-sigma-Algebren oder auf Zufallsvariablen, wobei man offenbar meist eher auf Zufallsvariablen bedingt.

Ich meine herausgelesen zu haben, daß man dann unterscheidet, ob diese Zufallsvariable, auf die man bedingt, stetig oder diskret ist.

Wenn sie diskret ist, bleibt man (glaube ich) bei der elementaren Theorie, weil man annehmen kann, daß man nicht Gefahr läuft, eventuell durch 0 zu teilen.

Wenn die Zufallsvariable, auf die man bedingt, stetig ist, gibt's eine extra Theorie dafür und irgendwie verstehe ich das nicht.


Ich bin da ziemlich verwirrt und habe leider den Durchblick verloren.
Kann jemand helfen - auch, wenn ich leider nicht sehr präzise fragen kann?


Also ich habe mal ein Beispiel überlegt, bei dem ich nicht weiterkomme.

In der "normalen" Theorie würde man $P(A|B)$ doch einfach so berechnen:

[mm] $P(A|B)=\frac{P(A\cap B)}{P(B)}$ [/mm] und würde voraussetzen, daß $P(B)>0$.

Nun kann man das doch aber nicht einfach voraussetzen, oder?


Deswegen habe ich mir überlegt, wie man das in der allgemeinen Theorie machen würde, da müsste man das doch jetzt irgendwie so ausdrücken, daß man auf eine Zufallsvariable oder eine Unter-sigma-Algebra bedingt:

Könnte man nicht irgendwie als ZV dann [mm] $1_B$ [/mm] nehmen und dann sozusagen definieren [mm] $\mathcal{U}:=\left\{1_B^{-1}(w), w\in B\right\}$ [/mm] - hätte man dann nicht das Ereignis als Unter-sigma-Algebra ausgedrückt?

[mm] $P(A|B)=E(1_{A}|B)=E(1_A|1_B)(w),w\in [/mm] B$ (stimmt das überhaut und wenn ja: wieso? ich habe es noch nicht recht verstanden...)


Und wie würde man das jetzt konkret ausrechnen?

Mir ist noch nicht klar, wie man in der allgemeinen Theorie den bedingten Erwartungswert dann konkret bestimmt.


Ich weiß nur, daß der bedingte Erwartungswert einer integrierbaren Zufallsvariable X in der allgemeinen Theorie eine Zufallsvariable Z ist sodaß Z meßbar bezüglich der Unter-sigma-Algebra [mm] $\mathcal{U}$ [/mm] ist, integrierbar ist und $E(1_UZ)=E(1_UX)$ für alle U aus [mm] $\mathcal{U}$. [/mm]

Aber was das konkret z.B. für obiges Beispiel heißt, kapiere ich noch leider nicht.



        
Bezug
bed. Erwartungswert: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:59 Sa 19.05.2012
Autor: mikexx

Oder kann mir jemand einfach sagen:

1.) Wie lauten die Definitionen für bedingte Erwartungswerte und bedingte Wahrscheinlichkeiten im diskreten Fall.

2.) Und wie im stetigen Fall?


Und vllt. 3.) Wie folgt der diskrete Fall aus dem stetigen?



(Bitte keine Wikiedia Links, denn die kenne ich schon, leider finde ich sie aber nicht gut. :-))

Bezug
                
Bezug
bed. Erwartungswert: zum diskreten Fall
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:00 So 20.05.2012
Autor: mikexx

Ich habe das so verstanden, daß man im diskreten Fall (wenn also die bedingende Zufallsvariable diskret ist) bei der elementaren Definition von bedingter Wahrscheinlichkeit bzw. bedingtem Erwartungswert bleiben kann.


Nur, das verstehe ich nicht.

Bei der elementaren Definition muss man doch voraussetzen, daß die Bedingung eine Wahrscheinlichkeit größer als 0 hat; bei der allgemeinen Theorie will man doch aber diese Voraussetzung nicht mehr treffen. Dann muss es doch einen Unterschied in den Definitionen geben.

Bezug
                        
Bezug
bed. Erwartungswert: meine Idee
Status: (Frage) beantwortet Status 
Datum: 14:10 So 20.05.2012
Autor: mikexx

Da niemand so richtig antworten mag, schreibe ich jetzt mal meine Definition für den diskreten Fall hin. Und vielleicht antwortet jemand darauf.


Man hat also einen W.keitsraum [mm] $(\Omega,\mathcal{F},\mathbb{P})$, [/mm] einen messbaren Raum [mm] $(\Omega',\mathcal{F}')$, [/mm] und zwei [mm] $\mathcal{F}\setminus\mathcal{F}'$-messbare [/mm] Zufallsvariablen X und Y. Gesucht ist $P(X|Y) bzw. E(X|Y)$, wobei Y diskret sein soll.

Weil Y nur endlich viele oder abzählbar viele Werte [mm] $y_1,y_2,\hdots$ [/mm] annimmt, kann man die [mm] Unter-$\sigma$-Algebra [/mm] als [mm] $\sigma(B_j)$ [/mm] definieren, wobei [mm] $\Omega=\bigcup_{i\in\mathbb{N}}B_i$, $B_i$ [/mm] disjunkt$, [mm] $B_i=\left\{\omega\in\Omega~|~Y(\omega)=y_i\right\}$. [/mm]

Dann ist definiert:

[mm] $P(X|\sigma(B_i))(\omega)=P(X|B_i)=\frac{P(X\cap B_i)}{P(B_i)},\omega\in B_i, i\in\mathbb{N}$ [/mm]

Falls [mm] $P(B_i)=0$, [/mm] ist [mm] $P(X|\sigma(B_i))$ [/mm] irgendein beliebig gewählter konstanter Wert, der aber für alle [mm] $B_i$ [/mm] gleich sein muss.


Für den bedingten Erwartungswert gilt analog im diskreten Fall:

[mm] $E(X|\sigma(B_i))=E(X|B_i)=\frac{1}{P(B_i)}\int_{b_i}X\, dP,\omega\in B_i,i\in\mathbb{N}$ [/mm]

Falls [mm] $P(B_i)=0$, [/mm] nimmt [mm] $E(X|\sigma(B_i))$ [/mm] einen beliebig gewähltten konstanten Wert an, der für alle [mm] $B_i$ [/mm] gleich gewählt ist.






So, das ist das, was ich jetzt hinschreiben würde als Definition für den diskreten Fall. Es wäre toll, wenn ich eine Reaktion bekomme. Vielen lieben Dank-



Bezug
        
Bezug
bed. Erwartungswert: Antwort
Status: (Antwort) fertig Status 
Datum: 22:21 So 20.05.2012
Autor: Gonozal_IX

Hiho,

na dann wollen wir mal klein-klein anfangen.

> In der allgemeinen Theorie bedingt man dabei - glaube ich
> herausgefunden zu haben - entweder auf Unter-sigma-Algebren
> oder auf Zufallsvariablen, wobei man offenbar meist eher
> auf Zufallsvariablen bedingt.

nein, man bedingt immer auf Sigma-Algebren. Das Bedingen auf Zufallsvariablen ist nur die Kurzschreibweise für die von der Zufallsvariablen erzeugten Sigma-Algebra.

> Ich meine herausgelesen zu haben, daß man dann
> unterscheidet, ob diese Zufallsvariable, auf die man
> bedingt, stetig oder diskret ist.

Jein. Für die allgemeine Definition spielt das letztlich keine Rolle. Für diskrete Zufallsvariablen (oder allgemein: maximal abzählbar erzeugte Sigma-Algebren) kann man das nur noch konkret hinschreiben.

> Ich weiß nur, daß der bedingte Erwartungswert einer
> integrierbaren Zufallsvariable X in der allgemeinen Theorie
> eine Zufallsvariable Z ist sodaß Z meßbar bezüglich der
> Unter-sigma-Algebra [mm]\mathcal{U}[/mm] ist, integrierbar ist und
> [mm]E(1_UZ)=E(1_UX)[/mm] für alle U aus [mm]\mathcal{U}[/mm].

Ja, die Definition ist auch die, in meinen Augen, produktivste.

> Aber was das konkret z.B. für obiges Beispiel heißt,
> kapiere ich noch leider nicht.

Dann wollen wir das doch mal versuchen ein wenig aufzudröseln.
Halten wir fest:

Sei $X [mm] \in \mathcal{L}^1(\Omega,\mathcal{F},\IP)$, [/mm] dann heißt Y bedingte Erwartung von X bezüglich [mm] $\mathcal{G}\subseteq\mathcal{F}$, [/mm] wenn gilt:

i) Y ist [mm] $\mathcal{G}$-meßbar [/mm]
ii) [mm] $E[X*1_G] [/mm] = [mm] E[Y*1_G]$ [/mm] für alle [mm] $G\in\mathcal{G}$ [/mm]

zu i) sei die Frage erlaubt, ob dir der Begriff [mm] "$\mathcal{G}$-meßbar" [/mm] klar ist.
ii) bedeutet eben, dass für alle Ereignisse G aus [mm] \mathcal{G} [/mm] die "Prognose" (d.h. der Erwartungswert) übereinstimmt.

Soweit erstmal zur Theorie, nun zu deinen Fragen zum diskreten Fall.
Nehmen wir daher nun mal an, dass [mm] \mathcal{G} [/mm] endlich erzeugt ist, d.h. es gibt disjunkte [mm] $A_1,\ldots,A_n$ [/mm] mit [mm] $\mathcal{G}=\sigma(A_1,\ldots,A_n)$, [/mm] dann liefert i) sofort, dass Y von folgender Form ist:

$Y = [mm] \summe_{k=1}^n a_k*1_{A_k}$, [/mm] denn nur solche Funktionen sind [mm] $\mathcal{G}=\sigma(A_1,\ldots,A_n)$ [/mm] - meßbar.

Eigenschaft ii) liefert uns:

[mm] $E[Y*1_{A_k}] [/mm] = [mm] a_k*P(A_k) [/mm] = [mm] E[X*1_{A_k}]$ [/mm] für [mm] $k=1,\ldots,n$ [/mm]

und damit [mm] $a_k [/mm] = [mm] \bruch{E[X*1_{A_k}]}{P(A_k)}$ [/mm]

D.h. $Y = [mm] \summe_{k=1}^n \bruch{E[X*1_{A_k}]}{P(A_k)}*1_{A_k}$ [/mm] und man hat eine geschlossene Darstellung für Y gefunden.

Erstmal den Stoff bis hierhin.
Bei Fragen, fragen!

MFG,
Gono.

Bezug
                
Bezug
bed. Erwartungswert: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:34 Mo 21.05.2012
Autor: mikexx


> Hiho,
>  
> na dann wollen wir mal klein-klein anfangen.
>  
> > In der allgemeinen Theorie bedingt man dabei - glaube ich
> > herausgefunden zu haben - entweder auf Unter-sigma-Algebren
> > oder auf Zufallsvariablen, wobei man offenbar meist eher
> > auf Zufallsvariablen bedingt.
>
> nein, man bedingt immer auf Sigma-Algebren. Das Bedingen
> auf Zufallsvariablen ist nur die Kurzschreibweise für die
> von der Zufallsvariablen erzeugten Sigma-Algebra.
>  
> > Ich meine herausgelesen zu haben, daß man dann
> > unterscheidet, ob diese Zufallsvariable, auf die man
> > bedingt, stetig oder diskret ist.
>
> Jein. Für die allgemeine Definition spielt das letztlich
> keine Rolle. Für diskrete Zufallsvariablen (oder
> allgemein: maximal abzählbar erzeugte Sigma-Algebren) kann
> man das nur noch konkret hinschreiben.
>  
> > Ich weiß nur, daß der bedingte Erwartungswert einer
> > integrierbaren Zufallsvariable X in der allgemeinen Theorie
> > eine Zufallsvariable Z ist sodaß Z meßbar bezüglich der
> > Unter-sigma-Algebra [mm]\mathcal{U}[/mm] ist, integrierbar ist und
> > [mm]E(1_UZ)=E(1_UX)[/mm] für alle U aus [mm]\mathcal{U}[/mm].
>  
> Ja, die Definition ist auch die, in meinen Augen,
> produktivste.
>  
> > Aber was das konkret z.B. für obiges Beispiel heißt,
> > kapiere ich noch leider nicht.
>  
> Dann wollen wir das doch mal versuchen ein wenig
> aufzudröseln.
>  Halten wir fest:
>  
> Sei [mm]X \in \mathcal{L}^1(\Omega,\mathcal{F},\IP)[/mm], dann
> heißt Y bedingte Erwartung von X bezüglich
> [mm]\mathcal{G}\subseteq\mathcal{F}[/mm], wenn gilt:
>  
> i) Y ist [mm]\mathcal{G}[/mm]-meßbar
>  ii) [mm]E[X*1_G] = E[Y*1_G][/mm] für alle [mm]G\in\mathcal{G}[/mm]
>  
> zu i) sei die Frage erlaubt, ob dir der Begriff
> "[mm]\mathcal{G}[/mm]-meßbar" klar ist.

Ich denke schon. Wenn eine Zufallsvariable z.B. [mm] $Z\colon (\Omega,\mathcal{G},P)\to (\Omega',\mathcal{M})$ [/mm] lautet, so bedeutet [mm] $\mathcal{G}$-messbar [/mm] einfach, daß die Urbilder messbarer Mengen in [mm] $\mathcal{G}$ [/mm] liegen, also wenn [mm] $X^{-1}(M)\in\mathcal{G}~\forall~M\in\mathcal{M}$. [/mm]


>  ii) bedeutet eben, dass für alle Ereignisse G aus
> [mm]\mathcal{G}[/mm] die "Prognose" (d.h. der Erwartungswert)
> übereinstimmt.
>
> Soweit erstmal zur Theorie, nun zu deinen Fragen zum
> diskreten Fall.
>  Nehmen wir daher nun mal an, dass [mm]\mathcal{G}[/mm] endlich
> erzeugt ist, d.h. es gibt disjunkte [mm]A_1,\ldots,A_n[/mm] mit
> [mm]\mathcal{G}=\sigma(A_1,\ldots,A_n)[/mm], dann liefert i) sofort,
> dass Y von folgender Form ist:
>  
> [mm]Y = \summe_{k=1}^n a_k*1_{A_k}[/mm], denn nur solche Funktionen
> sind [mm]\mathcal{G}=\sigma(A_1,\ldots,A_n)[/mm] - meßbar.

Das habe ich leider noch nicht verstanden, wieso Y von dieser Form ist. Könntest Du das nochmal erklären, bitte?

>  
> Eigenschaft ii) liefert uns:
>  
> [mm]E[Y*1_{A_k}] = a_k*P(A_k) = E[X*1_{A_k}][/mm] für [mm]k=1,\ldots,n[/mm]
>  

Wieso liefert Eigenschaft ii) das?

> und damit [mm]a_k = \bruch{E[X*1_{A_k}]}{P(A_k)}[/mm]
>  
> D.h. [mm]Y = \summe_{k=1}^n \bruch{E[X*1_{A_k}]}{P(A_k)}*1_{A_k}[/mm]
> und man hat eine geschlossene Darstellung für Y gefunden.
>  
> Erstmal den Stoff bis hierhin.
>  Bei Fragen, fragen!
>  
> MFG,
>  Gono.

Vielen Dank für die bisherige Mühe!

[mm] \textit{mikexx} [/mm]

Bezug
                        
Bezug
bed. Erwartungswert: Antwort
Status: (Antwort) fertig Status 
Datum: 08:51 Do 24.05.2012
Autor: Gonozal_IX

Hiho,

> Das habe ich leider noch nicht verstanden, wieso Y von
> dieser Form ist. Könntest Du das nochmal erklären,
> bitte?

Jede endlich erzeugte Sigma-Algebra ist eine Algebra und der Rest folgt mit einfacher Maßtheorie (oder einfach mal nachschlagen :-) )
  

> > Eigenschaft ii) liefert uns:
>  >  
> > [mm]E[Y*1_{A_k}] = a_k*P(A_k) = E[X*1_{A_k}][/mm] für [mm]k=1,\ldots,n[/mm]
>  >  
>
> Wieso liefert Eigenschaft ii) das?

Wie sieht denn [mm] $Y*1_{A_k}$ [/mm] aus? Schreib das doch mal hin und fasse zusammen.

MFG,
Gono.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de