www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - bedingte Wahrscheinlichkeit
bedingte Wahrscheinlichkeit < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

bedingte Wahrscheinlichkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:59 Mi 09.11.2005
Autor: burkito

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo Ihr,
bin selbst Dipl.-Math., aber das ist schon eine Weile her. Ihr seid bestimmt viel näher an der Materie und könnt mir dabei helfen, das folgende Problem zu lösen:

Gegeben sind die bedingten Wahrscheinlichkeiten

P(A|B) = μ

P(A|C) = λ

Gesucht ist die bedingte Wahrscheinlichkeit (unter Verwendung von μ, λ)

P(A|B∩C)

Würde mich über Antworten freuen,
Viele Grüße
burkito



        
Bezug
bedingte Wahrscheinlichkeit: doppelte Bedingung
Status: (Antwort) fertig Status 
Datum: 10:24 Do 10.11.2005
Autor: danielinteractive

Hallo burkito,

ich denke die Angaben reichen nicht aus, da man ja noch keine Aussage über die Beziehung von B und C hat.

Man könnte so anfangen:
[mm]P(A | B \cap C)= \bruch{P(A\cap B\cap C)}{P(B\cap C)}=\bruch{P(B\cap A \cap C)}{P(B\cap C)}=[/mm]
[mm]\bruch{P(B)*P(A | B)*P(C | A\cap B)}{P(B)*P(C | B)}=\bruch{P(A|B)*P(C|A\cap B)}{P(C|B)}[/mm]
Bringt aber leider auch noch nicht viel... Wenn B,C unabhängig wären, könnte man mehr machen.

mfg
Daniel

Bezug
                
Bezug
bedingte Wahrscheinlichkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:57 Do 10.11.2005
Autor: burkito

Hallo Daniel,

vielen Dank erstmal für die schnelle Antwort. Schade eigentlich, dass das so einfach nicht geht.
Angenommen, B und C wären unabhängig (das ist allerdings nicht wirklich der Fall), wo siehst du hier die Vereinfachungsmöglichkeit? (A und B bzw. A und C sind jedoch nicht unabhängig!)
Ich könnte mir auch vorstellen, eine Approximation für P(B ∩ C) anzugeben. Ebenso sind Approximationen für P(A), P(B) und P(C) denkbar.
Wenn das alles nicht hilft, welche zusätzlichen Informationen werden wenigstens benötigt, um zu einem akzeptablen Ergebnis zu kommen?

Besten Dank nochmal und viele Grüße
burkito

Bezug
                        
Bezug
bedingte Wahrscheinlichkeit: mit Approx.
Status: (Antwort) fertig Status 
Datum: 09:33 Fr 11.11.2005
Autor: danielinteractive

Hallo burkito,

OK, das mit den Vereinfachungen bei Unabhängigkeit ist wohl doch nicht so toll, man könnte halt [mm]P(B\cap C)=P(B)*P(C)[/mm] schreiben. Aber nehmen wir mal an, du hättest die zwei gegebenen bedingten Wahrscheinlichkeiten und außerdem Approximationen für [mm]P(A), P(B), P(C), P(B\cap C), P(A \cup B \cup C)[/mm], also als letzte die approx. W'keit, dass überhaupt eines der Ereignisse eintritt. Dann kann man schon was machen:
[mm]P(A | B\cap C)=\bruch{P(A\cap B\cap C)}{P(B\cap C)}[/mm] Der Nenner wird hier approximiert, kümmern wir uns um den Zähler. Mit der Siebformel gilt:
[mm]P(A\cap B\cap C)=P(A)+P(B)+P(C)-P(A\cup B)-P(B\cup C)-P(A\cup C)+P(A\cup B\cup C)[/mm]
Und [mm]P(A\cup B)=P(A)+P(B)-P(A\cap B)=P(A)+P(B)-P(A | B)*P(B)[/mm], analog für [mm]P(A\cup C)[/mm]. Für [mm]P(B\cup C)[/mm] können wir [mm]P(B)+P(C)-P(B\cap C)[/mm] einsetzen. Also ergibt sich
[mm]P(A\cap B\cap C)=P(A)+P(B)+P(C)-P(A)-P(B)+P(A|B)*P(B)-P(B)-P(C)+P(B\cap C)-P(A)-P(C)+P(A|C)*P(C)+P(A\cup B\cup C)=[/mm]
[mm]-P(A)-P(B)-P(C)+\mu*P(B)+P(B\cap C)+\lambda*P(C)+P(A\cup B\cup C)[/mm]

Hoffe das geht mit den Approximationen...

mfg
Daniel

Bezug
                                
Bezug
bedingte Wahrscheinlichkeit: danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:57 So 13.11.2005
Autor: burkito

hallo daniel,

vielen dank für deine bemühungen!!

da sitz ich nun also mit meinem wahrscheinlichkeits-salat;-) leider glaube ich, dass mir das dann ein paar approximationen zuviel sind, um auf ein aussagekräftiges ergebnis zu kommen. aber vielleicht fällt mir ja noch was ein.

viele grüße
burkito

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de