www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - bedingte Wkeit mit Stoppzeiten
bedingte Wkeit mit Stoppzeiten < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

bedingte Wkeit mit Stoppzeiten: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 17:55 Do 15.12.2011
Autor: Bappi

Aufgabe
Hallo!

Gegeben sei eine ZV [mm] $\tau \sim \mathrm{Exp}(1)$, [/mm] also exponentialverteilt mit Parameter 1:  [mm] $\mathbb P(\tau [/mm] > t) = [mm] e^{-t}$. [/mm] Wir definieren weiter den Prozess [mm] $\mathrm [/mm] X = [mm] (X_t)_{t\geq 0}$ [/mm] mit

[mm] $X_t [/mm] = [mm] X_t(\omega) [/mm] = [mm] \max(0, [/mm] t - [mm] \tau(\omega))$, [/mm]

wo [mm] $\mathcal F_t [/mm] = [mm] \sigma(X_s, [/mm] s [mm] \leq [/mm] t)$, $t [mm] \geq [/mm] 0$ die natürliche Filtration ist und [mm] $\mathcal F_\tau$ [/mm] die [mm] $\sigma$-Algebra [/mm] der [mm] $\tau$-Vergangenheit [/mm] (assoziierte [mm] $\sigma$-Algebra) [/mm]
[mm] $\mathcal F_\tau [/mm] := [mm] \left\{ A \in \mathcal F_\infty : A \cap \{\tau \leq t\} \in \mathcal F_t, \thinspace \forall t \geq 0 \right\}, \thinspace \mathcal F_\infty [/mm] = [mm] \sigma \left( \bigcup_{t\geq 0} \mathcal F_t \right)$ [/mm]  

Nun will ich zwei bedingte Wahrscheinlichkeiten ausrechnen:

(i) [mm] $\mathbb P(X_{\tau + s} \leq [/mm] x [mm] \mid \mathcal F_\tau) [/mm] = [mm] \begin{cases} 1 & x > s\\ 0 & x \leq s\end{cases}$ [/mm]

(ii) [mm] $\mathbb P(X_{t+s} \leq [/mm] x [mm] \mid X_t [/mm] = 0) = [mm] \begin{cases} 1 & x > s\\ e^{-(s-x)} & x \leq s\end{cases}$ [/mm]



Nun ist ja leicht zu sehen, dass [mm] $X_t [/mm] = a > 0$ für ein $t$, und damit [mm] $X_{t+s} [/mm] = a + s$ für alle $s [mm] \geq [/mm] 0$ gilt. Ganz einfach weil [mm] $X_t$ [/mm] nur feste Werte annimmt. Außerdem: Gilt für ein $t$ mit [mm] $X_t [/mm] = 0$, so muss [mm] $X_s [/mm] = 0$ für [mm] $s\leq [/mm] t$ gelten.

Nun (auch durch Skizze oder einfach Einsetzen) sieht man auch sofort, dass [mm] $\{ \omega : \tau(\omega) \geq t \} [/mm] = [mm] \{ \omega : X_t(\omega) = 0\} \in \mathcal F_t$, [/mm] also ist [mm] $\tau$ [/mm] eine Stoppzeit.

Wähle ich nun ein [mm] $\tau$ [/mm] gilt weiter [mm] $\mathbb P(X_{\tau + s} [/mm] = s) = 1$ (auch einfach einsetzen).

Ok das zur Vorarbeit. Jetzt möchte ich die bedingten Wahrscheinlichkeiten ausrechnen.

Betrachte ich nun (i), dann folgt doch mit [mm] $\mathbb P(X_{\tau + s} [/mm] = s) = 1$ direkt


[mm] $\mathbb P(X_{\tau + s} \leq [/mm] x [mm] \mid \mathcal F_\tau) [/mm] = [mm] \begin{cases} 1 & x > s\\ 0 & x \leq s\end{cases}$ [/mm]

Eigentl. einsichtig. Stünde dort eine "t" statt [mm] "\tau" [/mm] und [mm] "\mathcal F_t", [/mm] dann würden wir ja einfach gegen die natürliche Filtration à la [mm] $\mathbb P(X_{t + s} \leq [/mm] x [mm] \mid \mathcal F_t) [/mm] = [mm] $\mathbb P(X_{t + s} \leq [/mm] x [mm] \mid \sigma(X_s, s\leq [/mm] t)) "bedingen" und es wäre einfach offensichtlich. Nur versteh ich nicht ganz wie ich das bei [mm] $\mathcal F_\tau$ [/mm] angehe.

Zu (ii):

Definition der bedingten Erwartung gibt:

[mm] $\mathbb P(X_{t+s} \leq [/mm] x [mm] \mid X_t [/mm] = 0) = [mm] \frac{\mathbb P(X_{t+s} \leq x, X_t = 0)}{\mathbb P(X_t = 0)} [/mm] = [mm] \frac{\mathbb P(X_{t+s} \leq x, X_t = 0)}{\mathbb P(\tau \geq t)} [/mm] = [mm] \frac{\mathbb P(X_{t+s} \leq x, X_t = 0)}{e^{-t}} [/mm] = ?$

Hier weiß ich nicht, wie ich den Zähler weiter "verarbeiten" kann.

Grüße!

        
Bezug
bedingte Wkeit mit Stoppzeiten: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 10:22 Sa 17.12.2011
Autor: Bappi

Skizzen helfen meist weiter. Wir haben ein Intervall t bis t + s und suchen darin alle exponentialverteilten ZV ab t + s - x. Also haben wir gerade

$ [mm] \mathbb P(X_{t+s} \leq [/mm] x [mm] \mid X_t [/mm] = 0) = [mm] \mathbb P(\tau \geq [/mm] t + s - x [mm] \mid \tau \geq [/mm] t) = [mm] \mathbb P(\tau \geq [/mm] s - x) $

wegen der Gedächtnislosigkeit. Wie ich den ersten Teil aber konkret berechnen soll, weiß ich nicht.

Bezug
                
Bezug
bedingte Wkeit mit Stoppzeiten: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:20 Mo 19.12.2011
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
        
Bezug
bedingte Wkeit mit Stoppzeiten: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:19 Sa 17.12.2011
Autor: vivo

Hallo,

meinst du bedingte Erwartung oder bedingte Wahrscheinlichkeit?

Grüße

Bezug
                
Bezug
bedingte Wkeit mit Stoppzeiten: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 18:26 Sa 17.12.2011
Autor: Bappi

Wahrscheinlichkeiten, wie in der Formel steht...sry.
Bezug
                        
Bezug
bedingte Wkeit mit Stoppzeiten: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:20 Mo 19.12.2011
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
        
Bezug
bedingte Wkeit mit Stoppzeiten: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:20 Sa 17.12.2011
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de