www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Stochastik" - (bedingter) Erwartungswert
(bedingter) Erwartungswert < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

(bedingter) Erwartungswert: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:22 Sa 10.04.2010
Autor: chris3

Hallo Leute!
Ich habe eine recht allgemeine Frage bzgl. dem Zusammenhang zwischen dem Erwartungswert und dem bedingtem E-Wert. Gibt es evtl eine Gesetzesmäßigkeit, die besagt, dass der Erwartungswert mind. so groß ist, wie der bedingte Erwartungswert einer Zufallsvariablen?
Oder kann es sein, wenn der Erwartungswert mind. so groß wie eine bestimmte Zahl ist, dass diese Ungleichung dann auch für den bedingten Erwartungswert gilt??
Vielen Dank im Voraus für Eure Hilfe!!
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Euer Chris

        
Bezug
(bedingter) Erwartungswert: Antwort
Status: (Antwort) fertig Status 
Datum: 17:29 Sa 10.04.2010
Autor: Blech

Hi,

E(X) ist eine Zahl, $E(X\ |\ Y)$ ist eine Zufallsvariable.

Sagen wir $X=Y+Z$, mit Y und Z i.i.d [mm] $\mathcal [/mm] N(0,1)$ ZV, dann ist

E(X)=0

$E(X\ |\ Y)=Y$, d.h. es kann irgendeine Zahl auf [mm] $\IR$ [/mm] sein.


Was willst Du denn zeigen?

ciao
Stefan

Bezug
                
Bezug
(bedingter) Erwartungswert: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:41 Sa 10.04.2010
Autor: chris3

Hi!
Ich würde gerne, einen Beweis mit vollständiger Induktion führen (was zu beweisen ist, ist ziemlich lange...).Bei Induktionsschluss habe ich einen bedingten Erwartungswert, den ich abschätzen muss. Problem ist jetzt, dass mein Induktionsanfang nur eine Abschätzung über den Erwartungswert macht..wenn ich diese Ungleichung auf den bedingten E-Wert beziehe, würde das alles passen..ich weiß nur nicht, ob ich das darf??? es geht darum, dass der E-Wert eines Schätzers kleiner als die zu schätzende Funktion ist...
LG Chris

Bezug
                        
Bezug
(bedingter) Erwartungswert: Antwort
Status: (Antwort) fertig Status 
Datum: 18:02 Sa 10.04.2010
Autor: Blech


> Hi!
>  Ich würde gerne, einen Beweis mit vollständiger
> Induktion führen (was zu beweisen ist, ist ziemlich
> lange...).Bei Induktionsschluss habe ich einen bedingten
> Erwartungswert, den ich abschätzen muss. Problem ist
> jetzt, dass mein Induktionsanfang nur eine Abschätzung
> über den Erwartungswert macht..wenn ich diese Ungleichung
> auf den bedingten E-Wert beziehe, würde das alles
> passen..ich weiß nur nicht, ob ich das darf??? es geht

Daß Du das i.a. nicht darfst, hatte ich ja oben schon gezeigt.

> darum, dass der E-Wert eines Schätzers kleiner als die zu
> schätzende Funktion ist...
>  LG Chris

ciao
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de