www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integralrechnung" - berechnung volumen
berechnung volumen < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

berechnung volumen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:01 Fr 28.11.2008
Autor: noobo2

Aufgabe
ein keil ist ein zylinderschnitt der durch die halbe zylindergrundfläche sowie die um 45° geneigte schnittfläche begrenzt ist, wie groß ist sein volumen?

Das bild dazu ist dreidimensional. Die Zylinderhälfte hat z=0 und die Koordinaten (0/-3) / (0/3) und (3/0), sie wird also durch [mm] \wurzel{9-x^2} [/mm] dargestellt, hier kein suchen nach der umkehrfunktion, da es ja ein kreis ist.
Jetzt ist die Begrenzung um 45° nach oben geneigt. Jetzt ab ich mir gedacht, da ja der Winkel angegeben ist, dass ich mit dem Cosinus und dannach  dem sinus den Scheitelpunkt der Schnittfläche ausrechnen kann

cos(a) = 3/ Hyp  in rad.
5,71 = Hyp
sin(a) *Hyp = 4,85
Diese obere Parabel muss nun eigentlich gehen durch (0/-3)/ (0/3) und (5,71/0), diese funktion kann man auch interpolieren = 1,36224* [mm] \wurzel{4,85-x} [/mm] dann haben wir höhe und breite udn somit die querschnittsfläche ich komm aber am ende nur , wenn ich dann noch von 0,3 integriere auf 2,36 da ssit definitv falsch ..wo liegt denn der fehler?

        
Bezug
berechnung volumen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:25 Fr 28.11.2008
Autor: donp

Hallo,

Bin mir mit der Keilform nicht ganz sicher, aber wenn der Zylinder quasi eine dicke Scheibe ist (mit Kreisflächen oben und unten), dann müsste es sich beim beschriebenen Keil um die halbe Scheibe handeln (mit Halbkreisflächen oben und unten), die nochmal schräg durchschnitten ist, und zwar 45° von der geraden Seite des Halbkreises aus nach außen zum Umfang hin.

Wenn der Zylinder die Höhe des Kreisradius hat, dann ist das Volumen des geteilten Zylinders (mit Halbkreisflächen oben und unten) natürlich genau halb so groß, und das Volumen des Keils müsste dann wiederum genau halb so groß sein, d.h. 1/4 so groß wie das Volumen des ganzen Zylinders mit Höhe r=Radius.

Vielleicht das hilft dir das weiter.

Gruß, Don P

Bezug
                
Bezug
berechnung volumen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:33 Fr 28.11.2008
Autor: noobo2

so mystereium ist geklärt falscher ansatzt danke

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de