www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Partielle Differentialgleichungen" - bergwanderung mit steigung
bergwanderung mit steigung < partielle < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

bergwanderung mit steigung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:53 Sa 04.04.2009
Autor: erisve

Aufgabe
Durch die Funktionsfläche [mm] z=\bruch{1}{\wurzel{2}}*sin(xy) [/mm] sei ein hügliges Gelände beschrieben. Eine Wandergruppe befindet sich an der Geländestelle (0,0,0) und will zu einer bei [mm] (1,1,\bruch{sin(1)}{\wurzel{2}} [/mm] befindlichen Jausenstaion aufbrechen, wobei der Weg senkrecht über der Geraden x=y verlaufen soll. Alle Teilnehmer sind sehr sportlich und können notfalls Steigungen bis zu 45°überwinden. Werden sie die Jausenstaion erreichen?

Hallo,
kaum hat das neue Semester angefangen komme ich mal wieder gar nicht mit meinen Übungszetteln klar.
Bei dieser Aufgabe habe ich an eine Richtungsableitung gedacht, wäre dann meine Funktion die Funktionsfläche nach 0 umgelstellt? Darf ich für x,y,z dann in die Definiton der Richtungsableitung 0 einsetzten?  Für Tipps wäre ich sehr dankbar.

        
Bezug
bergwanderung mit steigung: Antwort
Status: (Antwort) fertig Status 
Datum: 16:37 Sa 04.04.2009
Autor: Al-Chwarizmi


> Durch die Funktionsfläche [mm]z=\bruch{1}{\wurzel{2}}*sin(xy)[/mm]
> sei ein hügliges Gelände beschrieben. Eine Wandergruppe
> befindet sich an der Geländestelle (0,0,0) und will zu
> einer bei [mm]\left(1,1,\bruch{sin(1)}{\wurzel{2}}\right)[/mm] befindlichen
> Jausenstaion aufbrechen, wobei der Weg senkrecht über der
> Geraden x=y verlaufen soll. Alle Teilnehmer sind sehr
> sportlich und können notfalls Steigungen bis zu
> 45°überwinden. Werden sie die Jausenstaion erreichen?
>  Hallo,
> kaum hat das neue Semester angefangen komme ich mal wieder
> gar nicht mit meinen Übungszetteln klar.
> Bei dieser Aufgabe habe ich an eine Richtungsableitung
> gedacht, wäre dann meine Funktion die Funktionsfläche nach
> 0 umgestellt? Darf ich für x,y,z dann in die Definiton der
> Richtungsableitung 0 einsetzten?  Für Tipps wäre ich sehr
> dankbar.


Hallo erisve,

Da die Wanderung so schön der Geraden y=x entlang führt,
ist dies wohl einfach zu berechnen. Benützen wir noch den
Parameter [mm] t\in[0,1] [/mm] für eine Parametrisierung des Weges.
Zum Parameterwert  t gehört der Geländepunkt P(x/y/z)
mit x=t, y=t und [mm] z=\bruch{1}{\wurzel{2}}*sin(t^2). [/mm]
Der in horizontaler Richtung bis dahin zurückgelegte Weg
ist [mm] s=\wurzel{2}*t. [/mm] Wenn man also das "Profil" des Wander-
wegs in einem s-z-Koordinatensystem aufzeichnet, so ist
[mm] z(s)=\bruch{1}{\wurzel{2}}*sin(t^2)=\bruch{1}{\wurzel{2}}*sin(\bruch{s^2}{2}) [/mm]
Die Steigung des Weges an dieser Stelle entspricht der
Ableitung dieses Terms nach s. Man kann dann entscheiden,
ob die maximal erlaubte Steigung erreicht oder allenfalls
überschritten wird.
Natürlich entspricht die so berechnete Steigung der
Richtungsableitung in der Richtung des Vektors (1,1).
Umstellen muss man die Flächengleichung zu deren
Berechnung gar nicht.


LG

Bezug
                
Bezug
bergwanderung mit steigung: danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:23 Sa 04.04.2009
Autor: erisve

hey,erstmal vielen Dank für die schnelle Antwort,  ich denke ich wäre nicht darauf gekommen eine Funktion in Abhängigkeit von der horizontalen Wegstercke aufzustellen und jenes gibt also die Steigung an? Okay dann muss ich ja jetzt nur noch für s den maximalen Wert [mm] \wurzel{2} [/mm] einseten und würde dann rauskriegen dass die Steigung maximal 0,54 steil wird, demnach schaffen die bergwanderer diese Steigungen da sie Steigungen bis zu 0,785 überwinden können. Richtig so?

Bezug
                        
Bezug
bergwanderung mit steigung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:17 Sa 04.04.2009
Autor: Al-Chwarizmi


> hey,erstmal vielen Dank für die schnelle Antwort,  ich
> denke ich wäre nicht darauf gekommen eine Funktion in
> Abhängigkeit von der horizontalen Wegstercke aufzustellen
> und jenes gibt also die Steigung an? Okay dann muss ich ja
> jetzt nur noch für s den maximalen Wert [mm]\wurzel{2}[/mm] einseten
> und würde dann rauskriegen dass die Steigung maximal 0,54
> steil wird, demnach schaffen die bergwanderer diese
> Steigungen da sie Steigungen bis zu 0,785 überwinden
> können. Richtig so?


Moment. Die angegebene Funktion gibt z als Funktion
der zurückgelegten (horizontalen) Strecke s. Die Steigung
des Weges wird durch die Ableitungsfunktion davon,
also durch [mm] z'(s)=\bruch{dz}{ds} [/mm] beschrieben.
Die grösste Steigung muss natürlich nicht beim grössten
s-Wert  [mm] s=\wurzel{2} [/mm] angenommen werden.
Und die höchste zugelassene Steigung ist nicht 0.785 !

LG

  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de