www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integration" - best. Integral differenzieren
best. Integral differenzieren < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

best. Integral differenzieren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:13 Do 18.10.2007
Autor: Braunstein

Hallo,
wird ein unbestimmtes Integral [mm] \integral_{}^{}{f(t) dt} [/mm] nach dt abgeleitet, so verschwindet doch das integral. Bei Integralen der Form [mm] \integral_{0}^{x}{f(t) dt} [/mm] nach dx abgeleitet wird doch zuerst das Integral berechnet und das Ergebnis nach x differenziert.

Wie ist das bei bestimmten Integralen der Form [mm] \integral_{x_{0}}^{x_{1}}{f(t) dt}, [/mm] wenn nach dx abgeleitet wird?

--> [mm] \integral_{x_{0}}^{x_{1}}{ \bruch{f(t)}{dx} dt} [/mm]

Mein Professor hat in der Vorlesung folgendes an die Tafel geschrieben:

[Dateianhang nicht öffentlich]
[mm] x_{0}\le t\le x_{1} [/mm]
[mm] y_{0}\le t\le y_{1} [/mm]

[mm] u(x,y)=\integral_{x_{0}}^{x_{1}}{P(t,y_{0}) dt}+\integral_{y_{0}}^{y_{1}}{Q(x_{1},t) dt} [/mm]

[mm] \bruch{\partial u}{\partial x}=P(x_{1},y_{0})+\integral_{y_{0}}^{y_{1}}{\bruch{\partial Q(x_{1},t)}{\partial x} dt} [/mm]

Wie ist er hier auf [mm] P(x_{1},y_{0}) [/mm] gekommen? [mm] x_{1} [/mm] und [mm] x_{0} [/mm] sind doch konstante Grenzen, oder?

Ich hoffe, jemand kann mir da weiter helfen.

Gruß, h.


Dateianhänge:
Anhang Nr. 1 (Typ: png) [nicht öffentlich]
        
Bezug
best. Integral differenzieren: Antwort
Status: (Antwort) fertig Status 
Datum: 16:41 Do 18.10.2007
Autor: leduart

Hallo
> Hallo,
> wird ein unbestimmtes Integral [mm]\integral_{}^{}{f(t) dt}[/mm]

das versteh ich schon mal nicht. t ist doch nur das Integrationssymbol, und was bedeutet das Wort "ubestimmtes Integral für dich?

> nach dt abgeleitet, so verschwindet doch das integral.
> Bei
> Integralen der Form [mm]\integral_{0}^{x}{f(t) dt}[/mm] nach dx
> abgeleitet wird doch zuerst das Integral berechnet und das
> Ergebnis nach x differenziert.

Der Hauptsatz sagt doch, dass das f(x) ist!

>
> Wie ist das bei bestimmten Integralen der Form
> [mm]\integral_{x_{0}}^{x_{1}}{f(t) dt},[/mm] wenn nach dx abgeleitet

Ein bestimmtes Integral ist ne Zahl, die nach x abgeleitet gibt 0 das Ding hängt doch von niix ab!

> wird?
>
> --> [mm]\integral_{x_{0}}^{x_{1}}{ \bruch{f(t)}{dx} dt}[/mm]
>  
> Mein Professor hat in der Vorlesung folgendes an die Tafel
> geschrieben:
>
> [Dateianhang nicht öffentlich]
>  [mm]x_{0}\le t\le x_{1}[/mm]
>  [mm]y_{0}\le t\le y_{1}[/mm]
>  
> [mm]u(x,y)=\integral_{x_{0}}^{x_{1}}{P(t,y_{0}) dt}+\integral_{y_{0}}^{y_{1}}{Q(x_{1},t) dt}[/mm]

da hängt U nicht von x und y ab, sondern von x1 und y1
nimm die oberen Grenzen x,y dann stimmts. ebenso in Q nicht Q(x1,t)sondern Q(x,t) denn wenn Q nicht von x abhängt wär die Ableitung ja 0
also entweder in u x1,y1 oder im Integral x,y
Wenn du natürlich die Ableitung an der Stelle x1 meinst, ists am Ende wieder richtig.  

> [mm]\bruch{\partial u}{\partial x}=P(x_{1},y_{0})+\integral_{y_{0}}^{y_{1}}{\bruch{\partial Q(x_{1},t)}{\partial x} dt}[/mm]
>  
> Wie ist er hier auf [mm]P(x_{1},y_{0})[/mm] gekommen? [mm]x_{1}[/mm] und
> [mm]x_{0}[/mm] sind doch konstante Grenzen, oder?
>

Gruss leduart

Bezug
                
Bezug
best. Integral differenzieren: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:24 Fr 19.10.2007
Autor: Braunstein

Danke vorerst mal.

Ich betrachte nun die Funktion auf folgende Art und Weise:

[mm] u(x_{1},y_{1})=\integral_{x_{0}}^{x_{1}}{P(t,y_{0}) dt}+\integral_{y_{0}}^{y_{1}}{Q(x_{1},t) dt} [/mm]

Ich betrachte also [mm] x_{1} [/mm] und [mm] y_{1} [/mm] als meine Variablen. Nun leite ich die Funktion nach [mm] x_{1} [/mm] ab:

[mm] \bruch{\partial u}{\partial x_{1}}=P(x_{1},y_{0})+\integral_{y_{0}}^{y_{1}}{\bruch{\partial Q(x_{1},t)}{\partial x_{1}} dt} [/mm]

Soll ich nicht folgendes erhalten:

[mm] \bruch{\partial u(x_{1},y_{1})}{\partial x_{1}}=\integral_{x_{0}}^{x_{1}}{\bruch{\partial P(t,y_{0})}{\partial x_{1}} dt}+\integral_{y_{0}}^{y_{1}}{\bruch{\partial Q(x_{1},t)}{\partial x_{1}} dt} [/mm]

Und das ergibt ja laut Integrabilitätsbedingung:

[mm] \bruch{\partial u(x_{1},y_{1})}{\partial x_{1}}=\integral_{x_{0}}^{x_{1}}{\bruch{\partial P(t,y_{0})}{\partial x_{1}} dt}+\integral_{y_{0}}^{y_{1}}{\bruch{\partial P(x_{1},t)}{\partial y_{1}} dt} [/mm] wenn gilt [mm] \bruch{\partial P(t,y_{0})}{\partial y_{1}}=\bruch{\partial Q(x_{1},t)}{\partial x_{1}} [/mm]

...
...

Ah, okay, jetzt seh ich's. Naja, beim ersten Integral wird nach [mm] x_{1} [/mm] differenziert. Und [mm] x_{0} [/mm] ist hier eine Konstante. Also ergibt das erste Integral mit Differentiation dann [mm] P(x_{1},y_{0}). [/mm]

Beim zweiten Integral wird nach [mm] y_{1} [/mm] differenziert (lt. Integrabilitätsbestimmung). Also gilt hier dann [mm] P(x_{1},y_{1})-P(x_{1},y_{0}) [/mm]

Danke für deinen Hinweis.


PS:
Bestimmtes Integral: Grenzen sind genau angegeben, dh keine Variablen enthalten!  
Unbestimmtes Integral: Grenzen sind nicht angegeben bzw. enthalten eine Variable!

--> ÖNORM, wird an allen Unis so erklärt! [daumenhoch]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de