www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integration" - bestimmtes Integral
bestimmtes Integral < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

bestimmtes Integral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:07 Mo 13.03.2006
Autor: Riley

Aufgabe
[mm] \integral_{-1}^{1}{\bruch {1-\wurzel{1-x²}}{\wurzel{1-x²}} dx} [/mm]

hab versucht dieses integral mit substitution zu berechnen:
x = sin(y)
dx= cos(y)
[mm] \integral_{-1}^{1}{\bruch {1-\wurzel{1-x²}}{\wurzel{1-x²}} dx}=\integral_{-1}^{1}{\bruch {1-cos(y)}{cos(y)}cos(y) dy}=\integral_{-1}^{1}{(1-cos(y)) dy}= [/mm] y - sin(y) = arcsin(x) - x
die letzten zwei schritte von (-1) bis 1 (weiß nicht wie man das hier richtig eingibt, sorry...)
erste frage: stimmt das bis hierher oder muss ich die grenzen irgendwie verändern wegen der substitution und wenn ja wie?
und wenn nicht, wenn ich die grenzen einsetze bekomm ich ja:

arcsin(1)-1-arcsin(-1)+1= arcsin(1)-arcsin(-1) = 0 ???

hab mir mal das schaubild von arcsin(x) angeschaut, geht doch bei 1 und -1 gegen unendlich, muss ich dafür dann t einsetzen und den grenzwert t gegen unendlich bilden ??

okay, wär super, wenn mir jemand weiterhhelfen könnte...
Gruß yela ;)

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
bestimmtes Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 17:54 Mo 13.03.2006
Autor: Ina05

Hi,
wenn Du die Substitutionsregel angewendet hast, solltest Du die Integralsgrenzen ändern. D. h. anstatt:

>  [mm] \integral_{-1}^{1}{\bruch {1-\wurzel{1-x²}}{\wurzel{1-x²}} dx}=\integral_{-1}^{1}{\bruch {1-\cos(y)}{\cos(y)}\cos(y) dy} [/mm]

solltest Du folgendes schreiben:
[mm] \integral_{-1}^{1}{\bruch {1-\wurzel{1-x²}}{\wurzel{1-x²}} dx}=\integral_{-\pi/2}^{\pi/2}{\bruch {1-\cos(y)}{\cos(y)}\cos(y) dy} [/mm]

Du hast [mm] x=\sin(y) [/mm] geschrieben, d.h. für x=1 ist [mm] y=\pi/2 [/mm] und für x=-1 ist [mm] y=-\pi/2 [/mm]
Dann hast Du weiter:

[mm] =\integral_{-\pi/2}^{\pi/2}{(1-\cos(y)) dy}= [/mm]
[y - [mm] \sin(y) ]_{-\pi/2}^{\pi/2}= \pi/2-1-(-\pi/2+1) [/mm] = [mm] \pi [/mm]

Ich hoffe es kann Dir weiterhelfen,
Grüße


Bezug
                
Bezug
bestimmtes Integral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:19 Mo 13.03.2006
Autor: Riley

ah, okay, ganz vielen lieben dank für deine erklärung!! d.h. ich muss immer die grenzen mitnehmen (also für x einsetzen beim substituieren) und dann kann ich sie zum schluss einfach für y einsetzen und muss nicht zurücksubstituieren, stimmt das so?? ... bin da grad voll durcheinander gekommen....

Bezug
                        
Bezug
bestimmtes Integral: 2 Varianten
Status: (Antwort) fertig Status 
Datum: 18:37 Mo 13.03.2006
Autor: Loddar

Hallo Riley!


Es gibt zwei Wege: Du löst das entsprechende Integrasal zunächst als unbestimmtes Integral und musst dann am Ende die Substitution (hier bei Dir z.B. $x \ := \ [mm] \sin(y)$ [/mm] ) wieder rückgängig machen ("re-substituieren").


Oder Du subsituierst auch die Integrationsgrenzen gleich zu Beginn und kannst dann sofort nach der Integration diese neuen Grenzen einsetzen.


Gruß
Loddar


Bezug
                                
Bezug
bestimmtes Integral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:29 Mo 13.03.2006
Autor: Riley

dankeschön für deine erklärung, das ist gut mit den zwei möglichkeiten! ;)
jetzt hab ich noch ne frage, und zwar bei der regel  [mm] \integral_{}^{}{\bruch{g'(x)}{g(x)} dx} [/mm] = ln (g(x))  
was passiert hier wenn ich grenzen (z.B. a, b)hab?
kann ich sie dann einfach einsetzen: ln (g(b)) - ln(g(a)) ??

Bezug
                                        
Bezug
bestimmtes Integral: Stimmt so ...
Status: (Antwort) fertig Status 
Datum: 20:28 Mo 13.03.2006
Autor: Loddar

Hallo Riley!


>  jetzt hab ich noch ne frage, und zwar bei der regel  
> [mm]\integral_{}^{}{\bruch{g'(x)}{g(x)} dx}[/mm] = ln (g(x))

Genauer mit Betragsstrichen und Integrationskonstante:

[mm] $\integral_{}^{}{\bruch{g'(x)}{g(x)} \ dx} [/mm] \ = \ [mm] \ln\red{|}g(x)\red{|} [/mm] \ [mm] \blue{+C}$ [/mm]


> was passiert hier wenn ich grenzen (z.B. a, b)hab?
> kann ich sie dann einfach einsetzen: ln (g(b)) - ln(g(a)) ??

Ja, das darfst Du, weil das Ergebnis (= die Stammfunktion) wieder in Abhängigkeit ist von der Variablen $x_$ . Und da die Grenzen $a_$ und $b_$ ebenfalls "x-Grenzen" waren ... [ok] .


Gruß
Loddar


Bezug
                                                
Bezug
bestimmtes Integral: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:59 Mo 13.03.2006
Autor: Riley

okay super, danke dir vielmals! ;)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de