www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integralrechnung" - bestimmtes Integral
bestimmtes Integral < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

bestimmtes Integral: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 13:19 So 05.05.2013
Autor: RWBK

Aufgabe
Berechnen Sie das bestimmte Integral von

[mm] \integral_{-2}^{3}{ max(s,s^{2}-1) ds} [/mm]

Wünsche einen schönen guten Tag,

bei der obigen Aufgabe bin ich mir etwas unsicher, daher würde ich mich freuen wenn wir jemand sagen könnte was ich eventuell falsch gemacht habe.

[mm] \integral_{-2}^{3}{ max(s,s^{2}-1) ds}= \integral_{-2}^{0}{s ds}+\integral_{0}^{3}{s^{2}-1 ds} [/mm]

Ist das so richtig? Die nachfolgenden Berechnungen bekomme ich schon hin.

Mit freundlichen Grüßen
RWBK

        
Bezug
bestimmtes Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 13:25 So 05.05.2013
Autor: abakus


> Berechnen Sie das bestimmte Integral von

>

> [mm]\integral_{-2}^{3}{ max(s,s^{2}-1) ds}[/mm]
> Wünsche einen
> schönen guten Tag,

>

> bei der obigen Aufgabe bin ich mir etwas unsicher, daher
> würde ich mich freuen wenn wir jemand sagen könnte was
> ich eventuell falsch gemacht habe.

>

> [mm]\integral_{-2}^{3}{ max(s,s^{2}-1) ds}= \integral_{-2}^{0}{s ds}+\integral_{0}^{3}{s^{2}-1 ds}[/mm]

>

> Ist das so richtig? Die nachfolgenden Berechnungen bekomme
> ich schon hin.

>

> Mit freundlichen Grüßen
> RWBK

Hallo,
du behauptest also, dass im gesamten Intervall von -2 bis 0 der Wert von s größer ist als [mm] $s^2-1$, [/mm] und dass im gesamten Intervall von 0 bis 3 der Wert von [mm] $s^2-1$ [/mm] größer ist als s?
Gruß Abakus

Bezug
        
Bezug
bestimmtes Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 13:58 So 05.05.2013
Autor: M.Rex

Hallo

Hast du dir die Funktion f(x)=max(x;x²-1) mal skizziert?  Wenn nicht, solltest du das schleunigst tun. Das ganze sieht nämlich wie folgt aus:

[Dateianhang nicht öffentlich]

Marius

Dateianhänge:
Anhang Nr. 1 (Typ: png) [nicht öffentlich]
Bezug
                
Bezug
bestimmtes Integral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:44 So 05.05.2013
Autor: RWBK

Moin,

irgendwie klingelt es bei mir immer noch nicht.Kann mir das vllt einmal jemand erklären?

Mit freundlichen Grüßen

Bezug
                        
Bezug
bestimmtes Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 16:50 So 05.05.2013
Autor: M.Rex


> Moin,

>

> irgendwie klingelt es bei mir immer noch nicht.Kann mir das
> vllt einmal jemand erklären?

>

> Mit freundlichen Grüßen


Berechne die beiden Stellen [mm] $x_{1}$ [/mm] und [mm] $x_{2}$, [/mm] an denen die Funktionen innerhalb der Maximumsfunktion gleich sind, dann teile das Startintegral in drei Integrale auf.

Also:

$ [mm] \integral_{-2}^{3}{ max(s,s^{2}-1) ds} [/mm] $
[mm] =\int\limits_{-2}^{x_{1}}s^{2}-1ds+\int\limits_{x_{1}}^{x_{2}}sds+\int\limits_{x_{2}}^{3}s^{2}-1ds [/mm]

Marius

Bezug
                                
Bezug
bestimmtes Integral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:03 So 05.05.2013
Autor: RWBK

Hallo M.Rex,

jetzt mal ne Frage wie bist du auf diese 3 Integrale gekommen?

Mit freundlichen Grüßen

Bezug
                                        
Bezug
bestimmtes Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 17:08 So 05.05.2013
Autor: M.Rex


> Hallo M.Rex,

>

> jetzt mal ne Frage wie bist du auf diese 3 Integrale
> gekommen?

>

> Mit freundlichen Grüßen

Weil sich an den Stellen [mm] x_{1} [/mm] und [mm] x_{2} [/mm] die für die Maximumsfunktion relevante Teilfunktion ändert.
Bis [mm] x_{1} [/mm] ist [mm] $ss^2-1$, [/mm] also [mm] \max(s;s^{2}-1)=s [/mm] ab [mm] x_{2} [/mm] gilt dann [mm] wieder $\max(s;s^{2}-1)=s^{2}-1$ [/mm]

Marius

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de