www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Längen, Abstände, Winkel" - bestimmung des punktes
bestimmung des punktes < Längen+Abst.+Winkel < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Längen, Abstände, Winkel"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

bestimmung des punktes: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:48 So 26.04.2009
Autor: mef

Aufgabe
Bestimmen Sie auf der Geraden s den Punkt B so, dass das Dreieck ABC (A(1/0/-2); C(4/0/4) ) bei C einen rechten Winkel besitzt. Fertigen Sie eine Skizze an, die das Dreieck ABC sowie
die Geraden g und s enthält.
[Ergebnis: B(−4 | 10 | 8) ]

hallo,
ich weiß net so recht wie ich die aufgabe bewältigen soll.
aber einen ansatz meinerseits gibt es trotzdem:

schnittwinkel zw. zwei geraden
[mm] \overline{AC}= \vektor{1 \\ 0 \\ -2}+t*\vektor{3 \\ 0 \\ 6} [/mm]
[mm] \overline{BC}= \vektor{? \\ ? \\ ?}+t*\vektor{4-? \\ -? \\ 4-?} [/mm]


[mm] cos(\alpha)= \bruch{|u*v|}{|u|*|v|} [/mm]

[mm] cos(\alpha)= \bruch{|\vektor{3 \\ 0 \\ 6}*\vektor{4-? \\ -? \\ 4-?} |}{|3\wurzel{5}|*|\wurzel{(4-?)^{2}+(?)^{2}+(4-?)^{2}}|}=0 [/mm]

wie löst man jetzt nach dem unbekantten koordinaten des punktes B (?) auf?

oder ein ganz´anderer ansatz wäre mir sowieso lieber
vielen dank im voraus



        
Bezug
bestimmung des punktes: Antwort
Status: (Antwort) fertig Status 
Datum: 15:58 So 26.04.2009
Autor: abakus


> Bestimmen Sie auf der Geraden s den Punkt B so, dass das
> Dreieck ABC (A(1/0/-2); C(4/0/4) ) bei C einen rechten
> Winkel besitzt. Fertigen Sie eine Skizze an, die das
> Dreieck ABC sowie
>  die Geraden g und s enthält.
>  [Ergebnis: B(−4 | 10 | 8) ]
>  hallo,
> ich weiß net so recht wie ich die aufgabe bewältigen soll.

Hallo,
der Punkt B soll auf s liegen (wo auch immer das sein soll, hier hast du uns eine Angabe unterschlagen), seine Koordinaten sind also zunächst die eines beliebigen Punktes auf s.
Gruß Abakus


>  aber einen ansatz meinerseits gibt es trotzdem:
>  
> schnittwinkel zw. zwei geraden
>  [mm]\overline{AC}= \vektor{1 \\ 0 \\ -2}+t*\vektor{3 \\ 0 \\ 6}[/mm]
>  
> [mm]\overline{BC}= \vektor{? \\ ? \\ ?}+t*\vektor{4-? \\ -? \\ 4-?}[/mm]
>  
>
> [mm]cos(\alpha)= \bruch{|u*v|}{|u|*|v|}[/mm]
>  
> [mm]cos(\alpha)= \bruch{|\vektor{3 \\ 0 \\ 6}*\vektor{4-? \\ -? \\ 4-?} |}{|3\wurzel{5}|*|\wurzel{(4-?)^{2}+(?)^{2}+(4-?)^{2}}|}=0[/mm]
>  
> wie löst man jetzt nach dem unbekantten koordinaten des
> punktes B (?) auf?
>  
> oder ein ganz´anderer ansatz wäre mir sowieso lieber
>  vielen dank im voraus
>  
>  


Bezug
                
Bezug
bestimmung des punktes: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:07 So 26.04.2009
Autor: mef

s: ~x [mm] =\vektor{0 \\ 2 \\ 0}+u*\vektor{-1 \\ 2 \\ 2} [/mm]

entschuldigung

Bezug
        
Bezug
bestimmung des punktes: Antwort
Status: (Antwort) fertig Status 
Datum: 16:20 So 26.04.2009
Autor: leduart

Hallo
legt nun B auf s?
wenn ja hast du ja nur die Unbekannte u
nimm den Vektor AC Skalarprodukt mit Vektor  CB das muss 0 sein. da ist nur die Unbekannte u drin.
Gruss leduart

Bezug
                
Bezug
bestimmung des punktes: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:59 So 26.04.2009
Autor: mef

also:

[mm] |\vektor{3 \\ 0 \\ 6}|kreuz |\vektor{4-u_{1} \\ -u_{2} \\ 4-u_{3}}| [/mm] =

[mm] 12-3u_{1}+24-6u_{3}=0 [/mm]
[mm] 36-3u_{1}-6u_{3}=0 [/mm]
        [mm] u_{3}=-2u_{1}, [/mm]  
B(u/0/-2u)

die erste und letzte koordinate würden mit dem ergebnis übereinstimmen , aber die zweite nicht???
oder ist es gleicgültig    

Bezug
                        
Bezug
bestimmung des punktes: Antwort
Status: (Antwort) fertig Status 
Datum: 19:29 So 26.04.2009
Autor: leduart

Hallo
ich versteh dein B nicht,
das liegt doch auf s
dann gilt doch [mm] B=\vektor{-u \\ 2+2u\\ 2u} [/mm]
oder hab ich jetzt das falsche s?
was soll
[mm] u_1,u_2,u_3 [/mm] sein, da ist doch nur ein u?
(Kreuz ist fuer Vektorprodukt, hier ist aber ein Skalarprodukt, da nimmt man meist das normale Malzeochen)
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Längen, Abstände, Winkel"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de