www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Ganzrationale Funktionen" - bestimmung ganzrationaler f(x)
bestimmung ganzrationaler f(x) < Ganzrationale Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

bestimmung ganzrationaler f(x): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:09 So 09.09.2007
Autor: pidaras007

Hallo,
hab hier ein problem bei bestimmung einer ganzrationalen funktion 3.grades. gegeben sind die Punkte A(2|2), B(3|9 und ein Tiefpunkt bei (1|1).

Also ich hab die algemeine funtion gebildet : f(x)= ax³+bx²+cx+d
und auch direkt die Ableitung dazu: f'(x)= 3ax²+2bx+c

So und daruas hab ich dann 4 Bedingungen aufgestellt:
I.  f(2)= 2  [mm] \Rightarrow [/mm]  8a+4b+2c+d=2
II. f(3)= 9  [mm] \Rightarrow [/mm]  27a+9b+3c+d=9
III. f(1)= 1  [mm] \Rightarrow [/mm]  a+b+c+d=1
IV. f'(1)= 0  [mm] \Rightarrow [/mm]  3a+2b+c=0

Also bis hierhin bin ich gekommen und weiter weiss ich irgendwie nicht wie ich das nach a, b, c oder d aufloesen soll. Hab gehoert dass man hier ein Additionsverfahren anwenden kann aber das klappt irgendwie nicht vielleicht mach ich da was falsch koennte mir jemand helfen danke im vorraus.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
bestimmung ganzrationaler f(x): Antwort
Status: (Antwort) fertig Status 
Datum: 13:39 So 09.09.2007
Autor: schachuzipus

Hallo pidaras,

du hast alle Bestimmungsgleichungen richtig aufgestellt [daumenhoch]

Auch ist deine Idee, das LGS mit dem Additionsverfahren zu lösen, gut

Ich mache mal nen Anfang...

[mm] \vmat{(I)&8a&+&4b&+&2c&+&d&=&2\\ (II)&27a&+&9b&+&3c&+&d&=&9\\(III)&3a&+&2b&+&c&&&=&0\\(IV)&a&+&b&+&c&+&d&=&1 } [/mm]


So hier machen wir ein paar Umformungen auf einmal, du kannst sie ja im Einzelnen nachvollziehen:

Wir Könnten rechnen:

[mm] -9\cdot{}(III)+(II) [/mm] und [mm] -8\cdot{}(IV)+(I) [/mm] und [mm] (III)+(-3)\cdot{}(IV) [/mm]

Das gibt

[mm] \vmat{(I')&&&-4b&&-6c&&-7d&=&-6\\ (II')&&&-9b&&-6c&+&d&=&9\\(III')&3a&+&2b&+&c&&&=&0\\(IV')&&&-b&&-2c&&-3d&=&-3 } [/mm]


So und hier dann:

[mm] -4\cdot{}(IV')+(I') [/mm] und [mm] (-9)\cdot{}(IV')+(II') [/mm]

Das gibt....

Damit solltest du weiter kommen.

Kontrolle:

a=1, b=-3, c=3, d=0


LG

schachuzipus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de