www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Induktion" - beweis durch Induktion
beweis durch Induktion < Induktion < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

beweis durch Induktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:37 Di 24.01.2012
Autor: Phnix

Aufgabe
Zeigen Sie: [mm] n!>2^n^-^1 [/mm]   für alle n [mm] \varepsilon [/mm] N mit n [mm] \ge [/mm] 3

N'abend folgendes Problem beschäftigt mich.


Mein Ansatz:
Anfang        n=3
[mm] 6>2^2 [/mm]        stimmt.

n+1

[mm] (n+1)!>2^n^-^1^+^1 [/mm]

So und nun steh ich auf dem Schlauch, wie kann ich weiter vorgehen?

        
Bezug
beweis durch Induktion: Antwort
Status: (Antwort) fertig Status 
Datum: 20:41 Di 24.01.2012
Autor: Gonozal_IX

Hiho,

zerlege die Fakültät in den "vorausgesetzten" Teil und einem Faktor.
Nutze für den vorausgesetzten Teil die Induktionsvoraussetzung und für den Faktor, dass er (offensichtlich) grösser als 2 ist.

MFG,
Gono.

Bezug
                
Bezug
beweis durch Induktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:51 Di 24.01.2012
Autor: Phnix

mhm hilft mir auch nicht weiter, probiere das mal das was ich verstanden habe anzuwenden:

[mm] n!+(n+1)>2^n^-^1^+^1 [/mm]

Meintest du sowas? was nu?


Bezug
                        
Bezug
beweis durch Induktion: Antwort
Status: (Antwort) fertig Status 
Datum: 20:59 Di 24.01.2012
Autor: Jule2


> mhm hilft mir auch nicht weiter, probiere das mal das was
> ich verstanden habe anzuwenden:
>  
> [mm]n!+(n+1)>2^n^-^1^+^1[/mm]

Das kann nicht stimmen bei Fakultät wird nix addiert sondern multipliziert
Also ich glaub eher [mm]n!*(n+1)>2^n^-^1*2[/mm]
Und diese Abschätzung gilt natürlich da [mm] n\ge3 [/mm] vorausgesetzt wurde

Sry sollte eigentlich ne Antwort sein keine Mitteilung

> Meintest du sowas? was nu?
>  

Bezug
                                
Bezug
beweis durch Induktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:10 Di 24.01.2012
Autor: Phnix

[mm]n!*(n+1)>2^n^-^1*2[/mm]

wieso *2 rechts? Was nu?



Bezug
                                        
Bezug
beweis durch Induktion: Antwort
Status: (Antwort) fertig Status 
Datum: 21:18 Di 24.01.2012
Autor: Jule2


>  [mm]n!*(n+1)>2^n^-^1*2[/mm]
>  
> wieso *2 rechts? Was nu?

Weil [mm] 2^n^-^1*2 [/mm] das selbe ist wie [mm] 2^n^-^1^+^1 [/mm] oder auch [mm] 2^n [/mm]

Nun hast du für [mm] n!*>2^n^-^1 [/mm] ja schon gezeigt dass es größer ist also schaust dir halt an was passiert mit der Abschätzung (n+1)>2 für [mm] n\ge3 [/mm]


Bezug
                                                
Bezug
beweis durch Induktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:27 Di 24.01.2012
Autor: Phnix

n+1>2 Diese haut für n>gleich3 immer hin.

Das soll mir jetzt sagen?


Bezug
                                                        
Bezug
beweis durch Induktion: Antwort
Status: (Antwort) fertig Status 
Datum: 21:31 Di 24.01.2012
Autor: Schmetterfee

Hallöchen,

dass soll dir jetzt sagen das du deinen Induktionsschritt bewiesen hast, weil deine Aussage [mm] (n+1)!>2^{n-1+1} [/mm] für alle n gilt wie du gerade selbst erklärt hast. Somit hast du deine Aussage bereits für alle n gezeigt. Was fehlt dir denn noch?

LG Schmetterfee

Bezug
                                                                
Bezug
beweis durch Induktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:39 Di 24.01.2012
Autor: Phnix

das kam mir so knall hart vor.

also fasse ich zusammen und bitte ochmal das es jemand bestätigt.

[mm] n!>2^n^-^1 [/mm]

für n=3
3*2*1 [mm] >2^3^-^1 \Rightarrow [/mm]  6>4                   das passt

n+1

[mm] n!*(n+1)>2*n^n^-^1 [/mm]  

[mm] \Rightarrow [/mm]    n+1>2   für [mm] n\ge [/mm] 3

Also dies war nun eine vollständige Induktion.

Danke



Bezug
                                                                        
Bezug
beweis durch Induktion: Antwort
Status: (Antwort) fertig Status 
Datum: 21:46 Di 24.01.2012
Autor: Jule2


> das kam mir so knall hart vor.
>  
> also fasse ich zusammen und bitte ochmal das es jemand
> bestätigt.
>  
> [mm]n!>2^n^-^1[/mm]
>  
> für n=3
>   3*2*1 [mm]>2^3^-^1 \Rightarrow[/mm]  6>4                   das
> passt
>  
> n+1
>  
> [mm]n!*(n+1)>2*n^n^-^1[/mm]  
>
> [mm]\Rightarrow[/mm]    n+1>2   für [mm]n\ge[/mm] 3

Ich würde hier keinen daraus folgt Schluss ziehen sondern sagen:
da n+1>2 für [mm] n\ge3 [/mm] immer erfüllt ist und
[mm] n!>2^n^-^1 [/mm] gilt folgt
daraus dass [mm] n!*(n+1)>2*n^n^-^1 [/mm] für alle [mm] n\ge3 [/mm] gilt!
Ansonsten siehts gut aus!

> Also dies war nun eine vollständige Induktion.
>  

> Danke
>  
>  

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de