beweis f nicht injektiv < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) überfällig | Datum: | 20:54 Mi 14.06.2006 | Autor: | tempo |
Aufgabe | Sei U [mm] \subset \IR^{n} [/mm] offen, f: U [mm] \to \IR^{m} [/mm] von der Klasse [mm] c^{1} [/mm] und m<n. Beweisen Sie, dass f nicht injektiv ist. |
guten abend an alle,
mein problem mit der oberen aufgabe ist einerseits ein verständnisproblem andererseits ein "beweisproblem". also erstmal zum verständnis: ich mache eine fallunterscheidung und stelle mir
1. (möglichst einfach) vor das U mehr elemente hat als [mm] \IR^{m} [/mm] (da m<n geht das ja) dann bilde ich U auf [mm] \IR^{m} [/mm] ab und weiß das mindestens ein element in [mm] \IR^{m} [/mm] mindestens "doppelt" belegt wird, damit wäre ja f schonmal nicht injektiv. (wie ich das mathematisch korrekt auschreiben soll ist mir auch noch nicht klar) so jetzt kann es ja sein das
2. in U gleich viele oder weniger elemente als in [mm] \IR^{m} [/mm] sind, da kann ich mir jetzt alles vorstellen! f bijektiv, f nur injektiv, f nur surjektiv und auch f weder injektiv noch surjektiv! (bitte nicht schipfen wegen elementen... ;) ist nur eine vorstellung die ich mir mache)
kann mir bite jemand einen schubs in die richtige richtung geben? die angabe das f von der Klasse [mm] C^{1} [/mm] ist hilft mir (bei meiner vorstellung) auch nicht weiter. (mit [mm] C^{1} [/mm] sind doch alle 1-mal stetig diffbaren funktionen gemeint oder? oder nur die 1-mal diffbaren (nicht zwigend stetig)? das wurde zwar mal in der Übung nachgefragt, hat aber mehr durcheinandergebracht als geordnet!)
mit dank und freundlichen grüßen im voraus...
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 21:20 Fr 16.06.2006 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|