www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integralrechnung" - beweis für unabhängikeit von t
beweis für unabhängikeit von t < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

beweis für unabhängikeit von t: hilfe beim Ansatz
Status: (Frage) beantwortet Status 
Datum: 17:54 Mi 21.02.2007
Autor: Karlchen

Aufgabe
  Der Graph [mm] K_{t} [/mm] gegeben durch [mm] f_{t}(x)=x^{3}-2tx^{2}+t^{2}x, [/mm] die x-achse und die Gerade mit der Gleichung [mm] x=\bruch{1}{3}t [/mm] schließen eine Fläche ein. Der GRaph der Funktion g mit [mm] g(x)=4x^{3} [/mm] teilt diese Fläche in zwei Teile.
Zeige, dass das Verhältnis der Inahlte dieser Teilflächen unabhängig von t ist.

Tach zusammen!

also ich verstehe irgendwie nciht, wie ich hier vorgehen muss. Muss ich erst mal die ganzen Flächen berechen? würde ich dneke ich hinkriegen, aber ich versteh das mit dieser Anhängigkeit nicht, wie mach ich das?

wär echt lieb wenn mir da jemand einen tipp geben könnte

GRUß KARLCHEN

        
Bezug
beweis für unabhängikeit von t: Antwort
Status: (Antwort) fertig Status 
Datum: 18:03 Mi 21.02.2007
Autor: leduart

Hallo Karlchen
>  Der Graph [mm]K_{t}[/mm] gegeben durch
> [mm]f_{t}(x)=x^{3}-2tx^{2}+t^{2}x,[/mm] die x-achse und die Gerade
> mit der Gleichung [mm]x=\bruch{1}{3}t[/mm] schließen eine Fläche
> ein. Der GRaph der Funktion g mit [mm]g(x)=4x^{3}[/mm] teilt diese
> Fläche in zwei Teile.
> Zeige, dass das Verhältnis der Inahlte dieser Teilflächen
> unabhängig von t ist.
>  Tach zusammen!
>  
> also ich verstehe irgendwie nciht, wie ich hier vorgehen
> muss. Muss ich erst mal die ganzen Flächen berechen? würde
> ich dneke ich hinkriegen, aber ich versteh das mit dieser
> Anhängigkeit nicht, wie mach ich das?

Genau! die vorkommenden Flaechen berechnen, haengen erst mal von t ab.
Dann das Verhaeltnis der Flaechen bilden,(der 2 Teile) und sehen ob dabei t rausfaellt, dann ist das Verh. unabhaengig von t.
das ist alles.
Gruss leduart

Bezug
                
Bezug
beweis für unabhängikeit von t: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:17 Mi 21.02.2007
Autor: Karlchen

achso, na dann werd ich das mal versuchen^^

danke euch 2!

Bezug
        
Bezug
beweis für unabhängikeit von t: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:04 Mi 21.02.2007
Autor: Moham

Ich vermute du musst die beiden einzelnen Integrale berechnen und durcheinander teilen (Verhältnis). Das Ergebnis wird wohl sein das t sich rauskürzt.

MfG

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de