www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Wahrscheinlichkeitsrechnung" - beweis unabhängig
beweis unabhängig < Wahrscheinlichkeit < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

beweis unabhängig: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:48 Do 29.01.2009
Autor: learningboy

Guten Tag,

ich soll beweisen / widerlegen, dass
wenn A und B unvereinbar sind, dass dann A und B zwangsläufig auch unabhängig sind.

Könnte mir jemand erkkären, wie ich da vorgehen muss?

Ich komme auf keinen Ansatz.

Morgen wird eine Klausur über u.a das Thema geschrieben.

thx

        
Bezug
beweis unabhängig: Definition
Status: (Antwort) fertig Status 
Datum: 15:55 Do 29.01.2009
Autor: Roadrunner

Hallo learningboy!


Beginne mit der Definition für []stochastische Unabhängigkeit; denn dann gilt:
[mm] $$P\left(A\cap B\right) [/mm] \ = \ P(A)*P(B)$$

Was gilt gemäß Aufgabenstellung für [mm] $P\left(A\cap B\right)$ [/mm] ?


Gruß vom
Roadrunner


Bezug
                
Bezug
beweis unabhängig: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:59 Do 29.01.2009
Autor: learningboy

ach so, das ist 0!?

das wäre ja schön, wenn das stimmt?!



Bezug
                        
Bezug
beweis unabhängig: weiter
Status: (Antwort) fertig Status 
Datum: 16:02 Do 29.01.2009
Autor: Roadrunner

Hallo learningboy!


> ach so, das ist 0!?

[ok] Was folgt dann daraus für $P(A)_$ und/oder $P(B)_$ ?

Gilt dies auch allgemein?


Gruß vom
Roadrunner


Bezug
                                
Bezug
beweis unabhängig: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:07 Do 29.01.2009
Autor: learningboy

a,b unvereinbar

--> a,b abhängig

das verstehe ich jetzt logisch, nur am beweis bzw. der widerlegung der ersten these haperts noch.

P(a|b)

sprich: p von B unter der Voraussetzung A = 0

und jetzt?

danke, dass ihr mir so schnell helft!

Bezug
        
Bezug
beweis unabhängig: Antwort
Status: (Antwort) fertig Status 
Datum: 16:19 Do 29.01.2009
Autor: luis52

Moin,

eine Moeglichkeit besteht darin, ein Beispiel zu konstruieren.
Betrachte das Experiment Werfen eines Wuerfels und
die Ereugnisse A=Werfen einer geraden Zahl und B=Werfen einer ungeraden Zahl ...

vg Luis

Bezug
                
Bezug
beweis unabhängig: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:27 Do 29.01.2009
Autor: learningboy

so anschaulich verstehe ich das schon, reicht das als beweis, dass so in worten zu schreiben oder muss da noch etwas mathematisches hin?

danke!!

Bezug
                        
Bezug
beweis unabhängig: Antwort
Status: (Antwort) fertig Status 
Datum: 16:29 Do 29.01.2009
Autor: luis52


> so anschaulich verstehe ich das schon, reicht das als
> beweis, dass so in worten zu schreiben oder muss da noch
> etwas mathematisches hin?

Wenn du das als *Gegenbeispiel* verwenden willst, musst du noch zeigen:

1) A und B sind disjunkt
2) A und B sind nicht unabhaengig.

vg Luis

Bezug
                                
Bezug
beweis unabhängig: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:36 Do 29.01.2009
Autor: learningboy

und wie geht das?

Bezug
                                        
Bezug
beweis unabhängig: Antwort
Status: (Antwort) fertig Status 
Datum: 16:39 Do 29.01.2009
Autor: luis52


> und wie geht das?

Vielleicht stolperst du ueber meine Wortwahl. Ich korrigiere:  Z.z. ist

1) A und B sind unvereinbar
2) A und B sind nicht unabhaengig.

Kommst du jetzt klar?

vg Luis

Bezug
                                                
Bezug
beweis unabhängig: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:40 Do 29.01.2009
Autor: learningboy

sagt das mein würfelbeispiel nicht automatisch?

danke.

Bezug
                                                        
Bezug
beweis unabhängig: Antwort
Status: (Antwort) fertig Status 
Datum: 16:49 Do 29.01.2009
Autor: luis52


> sagt das mein würfelbeispiel nicht automatisch?
>  

Wo ist denn dein Wuerfelbeispiel?

Waere ich dein Pruefer wuerde ich uber folgende Antwort jauchzen:

1) A und B sind disjunkt, [mm] $A\cap B=\emptyset$, [/mm]  denn es ist nicht moeglich, zugleich eine gerade und eine ungerade Zahl zu wuerfeln.

2) A und B sind nicht unabhaengig:

[mm] $P(A\cap B)=P(\emptyset)=0\ne\frac{1}{2}\times\frac{1}{2}=P(A)P(B)$. [/mm]

vg Luis

Bezug
                                                                
Bezug
beweis unabhängig: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:51 Do 29.01.2009
Autor: learningboy

danke.

die erste hälfte kann ich nachvollziehen,

nur wie kommt man auf

0,5 x 0,5

die wahrscheinlichkeit eine gerade bzw. eine ungerade zahl zu würfeln?

für was steht das x zwischen den beiden 0,5?

Also malzeichen gedacht

Bezug
                                                                        
Bezug
beweis unabhängig: Antwort
Status: (Antwort) fertig Status 
Datum: 16:59 Do 29.01.2009
Autor: luis52


> danke.
>  
> die erste hälfte kann ich nachvollziehen,
>  
> nur wie kommt man auf
>  
> 0,5 x 0,5
>  
> die wahrscheinlichkeit eine gerade bzw. eine ungerade zahl
> zu würfeln?

[ok]

>  
> für was steht das x zwischen den beiden 0,5?
>  
> Also malzeichen gedacht

[ok]


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de