www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Logik" - beweis zu äquivalenzrelation
beweis zu äquivalenzrelation < Logik < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Logik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

beweis zu äquivalenzrelation: Idee", "Korrektur"
Status: (Frage) beantwortet Status 
Datum: 01:08 Fr 12.01.2007
Autor: NatiSt

Aufgabe
Es sei R eine Aquivalenzrelation. Zeigen Sie:  
  
a)  (a,b)  Element R  <->Ka= Kb        

b)  (a,b) nicht Element R  <-> K a geschnittenKb =leere Menge

  

Frage im Anhang

Dateianhänge:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
        
Bezug
beweis zu äquivalenzrelation: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 01:33 Fr 12.01.2007
Autor: Gonozal_IX

Ka meint was?

Bezug
                
Bezug
beweis zu äquivalenzrelation: Idee"
Status: (Frage) beantwortet Status 
Datum: 19:40 So 14.01.2007
Autor: NatiSt

Aufgabe
Ja, mit Ka ist die Äquivalenzklasse gemeint.


hat jemand hinweise zu b)

Bezug
                        
Bezug
beweis zu äquivalenzrelation: Antwort
Status: (Antwort) fertig Status 
Datum: 23:03 So 14.01.2007
Autor: schachuzipus

Hallo

na das ist nicht so schwer, wenn du dir meine Begründungen für (a) durchgelesen hast, das geht (fast) genauso.

Also mal einen Tipp:

"=>": Sei [mm] \neg [/mm] aRb

zu zeigen: [mm] Ka\cap Kb=\emptyset [/mm]

indirekt: Ann: [mm] Ka\cap Kb\not=\emptyset [/mm]

Sei also  [mm] x\in Ka\cap [/mm] Kb [mm] \Rightarrow xRa\wedge [/mm] xRb

[mm] \Rightarrow aRx\wedge [/mm] xRb (wegen der Symmetrie von R)

[mm] \Rightarrow [/mm] aRb (wegen der Transitivität von R)  WIDERSPRUCH zur Vor.

[mm] \Rightarrow [/mm] Ann. falsch [mm] \Rightarrow Ka\cap Kb=\emptyset [/mm]


"<=": zz: [mm] Ka\cap Kb=\emptyset \rightarrow \neg [/mm] aRb

[mm] \Leftrightarrow [/mm] aRb [mm] \rightarrow Ka\cap Kb\not=\emptyset [/mm]

Hier sollte dir nun Teil (a) die Augen öfnen ;)

Lieben Gruß

schachuzipus

Bezug
        
Bezug
beweis zu äquivalenzrelation: Antwort
Status: (Antwort) fertig Status 
Datum: 01:49 Fr 12.01.2007
Autor: schachuzipus

Hallo

ich nehme an, mit Ka und Kb meinst du die Äquivalenzklassen von a und b.

zu c) Bei der "Hinrichtung" [mm] "\Rightarrow [/mm] " hast du ja schon den richtigen Ansatz, beide Teilmengenbeziehungen zu zeigen, also ich mach das mal für eine....

Sei also R eine Äquivalenzrelation auf einer Menge M und seien, a,b [mm] \in [/mm] M mit aRb

zu zeigen ist dann Ka=Kb, dh
(i)Ka [mm] \subset [/mm] Kb und
(ii)Ka [mm] \supset [/mm] Kb

zu (i): Sei x [mm] \in [/mm] Ka [mm] \Rightarrow [/mm] xRa (so ist die Äquivalenzklasse definiert)
Nach Vor. ist aRb, und, da R als Äquivalenzrelation transitiv ist folgt aus
xRa und aRb:    xRb, also x [mm] \in [/mm] Kb.

Die (ii) geht genauso

Zur Rückrichtung [mm] "\Leftarrow [/mm] "

Sei Ka=Kb

zu zeigen: aRb

Sei x [mm] \in [/mm] Ka=Kb [mm] \Rightarrow [/mm] xRa und xRb
wegen der Symmetrie von R folgt aus xRa:  aRx  und nun wieder wegen
der Transitivität aus aRx und xRb:  aRb  




Gruß

schachuzipus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Logik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de