biholomorphe Abbildungen < komplex < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 16:08 Sa 10.07.2010 | Autor: | Camille |
Aufgabe | Es seien gegeben:
[mm] G_{1} [/mm] = [mm] \IC [/mm] \ {z [mm] \in \IC: [/mm] Im z = 0 und Re [mm] \le [/mm] 0}
[mm] G_{2} [/mm] = {z [mm] \in \IC: [/mm] 0 < Im z < 1}
[mm] G_{3} [/mm] = {z [mm] \in \IC: [/mm] Re z > 0 und Im z > 0}
Finden sie biholomorphe Funktionen [mm] \mu_{1} [/mm] und [mm] \mu_{2} [/mm] mit [mm] \mu_{1}: G_{1} \to G_{2} [/mm] und [mm] \mu_{2}: G_{2} \to G_{3}. [/mm] |
Hallo zusammen!
Ich soll also zuerst eine biholomorphe Funktion finden, die die geschlitzte Ebene auf den Streifen mit 0 < Im z < 1 abbildet. Ist es richtig davon auszugehen, dass ich dafür die komplexe Logarithmusfunktion verwenden kann, muss?
Als zweites wird dann dieser Streifen auf den ersten Qudranten abgebildet. Ich denke, dass hierbei dann die komplexe Exponentialfunktion zur Anwendung kommt. Richtig?
Nur wie kann ich das Bild von [mm] \mu_{1} [/mm] und [mm] \mu_{2} [/mm] jeweils eingrenzen?
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 19:51 Sa 10.07.2010 | Autor: | rainerS |
Hallo!
> Es seien gegeben:
>
> [mm]G_{1} = \IC \backslash \{z \in \IC: \mathop{\mathrm{Im} z = 0 \text{ und }\mathop{\mathrm{Re} \le 0\}[/mm]
> [mm]G_{2} = \{z \in \IC: 0 < \mathop{\mathrm{Im} z < 1\}[/mm]
> [mm]G_{3} = \{z \in \IC: \mathop{\mathrm{Re} z > 0 \text{ und } \mathop{\mathrm{Im} z > 0\}[/mm]
>
> Finden sie biholomorphe Funktionen [mm]\mu_{1}[/mm] und [mm]\mu_{2}[/mm] mit
> [mm]\mu_{1}: G_{1} \to G_{2}[/mm] und [mm]\mu_{2}: G_{2} \to G_{3}.[/mm]
>
> Hallo zusammen!
>
> Ich soll also zuerst eine biholomorphe Funktion finden, die
> die geschlitzte Ebene auf den Streifen mit 0 < Im z < 1
> abbildet. Ist es richtig davon auszugehen, dass ich dafür
> die komplexe Logarithmusfunktion verwenden kann, muss?
>
> Als zweites wird dann dieser Streifen auf den ersten
> Qudranten abgebildet. Ich denke, dass hierbei dann die
> komplexe Exponentialfunktion zur Anwendung kommt. Richtig?
>
> Nur wie kann ich das Bild von [mm]\mu_{1}[/mm] und [mm]\mu_{2}[/mm] jeweils
> eingrenzen?
Mach es in zwei Schritten:
1. Was ist denn das Bild von [mm] $G_1$ [/mm] unter [mm] $\log [/mm] z$ (Hauptwert) ?
2. Wie kannst du diese Menge auf [mm] $G_2$ [/mm] abbilden?
Für [mm] $\mu_2$ [/mm] überleg dir mal, wie das Urbild von [mm] $\mu_2$ [/mm] unter [mm] $\exp$ [/mm] ausieht, oder anders ausgedrückt: Auf welche Menge bildet der Hauptwert des Logarithmus die Menge [mm] $\mu_2$ [/mm] ab?
Viele Grüße
Rainer
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 04:50 Di 13.07.2010 | Autor: | Camille |
> Hallo!
>
> > Es seien gegeben:
> >
> > [mm]G_{1} = \IC \backslash \{z \in \IC: \mathop{\mathrm{Im} z = 0 \text{ und }\mathop{\mathrm{Re} \le 0\}[/mm]
> > [mm]G_{2} = \{z \in \IC: 0 < \mathop{\mathrm{Im} z < 1\}[/mm]
> >
> [mm]G_{3} = \{z \in \IC: \mathop{\mathrm{Re} z > 0 \text{ und } \mathop{\mathrm{Im} z > 0\}[/mm]
>
> >
> > Finden sie biholomorphe Funktionen [mm]\mu_{1}[/mm] und [mm]\mu_{2}[/mm] mit
> > [mm]\mu_{1}: G_{1} \to G_{2}[/mm] und [mm]\mu_{2}: G_{2} \to G_{3}.[/mm]
> >
>
> > Hallo zusammen!
> >
> > Ich soll also zuerst eine biholomorphe Funktion finden, die
> > die geschlitzte Ebene auf den Streifen mit 0 < Im z < 1
> > abbildet. Ist es richtig davon auszugehen, dass ich dafür
> > die komplexe Logarithmusfunktion verwenden kann, muss?
> >
> > Als zweites wird dann dieser Streifen auf den ersten
> > Qudranten abgebildet. Ich denke, dass hierbei dann die
> > komplexe Exponentialfunktion zur Anwendung kommt. Richtig?
> >
> > Nur wie kann ich das Bild von [mm]\mu_{1}[/mm] und [mm]\mu_{2}[/mm] jeweils
> > eingrenzen?
>
> Mach es in zwei Schritten:
>
> 1. Was ist denn das Bild von [mm]G_1[/mm] unter [mm]\log z[/mm] (Hauptwert) ?
Der Hauptzweig des Logarithmus bildet die geschlitzte Ebene auf den Streifen zw. [mm] -\pi*i [/mm] und [mm] \pi*i [/mm] ab.
> 2. Wie kannst du diese Menge auf [mm]G_2[/mm] abbilden?
Also [mm] \bruch{log(z)+i\pi}{2\pi}?
[/mm]
>
> Für [mm]\mu_2[/mm] überleg dir mal, wie das Urbild von [mm]\mu_2[/mm] unter
> [mm]\exp[/mm] ausieht, oder anders ausgedrückt: Auf welche Menge
> bildet der Hauptwert des Logarithmus die Menge [mm]\mu_2[/mm] ab?
Hmmm... das blick' ich nicht.
>
> Viele Grüße
> Rainer
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 07:44 Di 13.07.2010 | Autor: | rainerS |
Hallo!
> > Hallo!
> >
> > > Es seien gegeben:
> > >
> > > [mm]G_{1} = \IC \backslash \{z \in \IC: \mathop{\mathrm{Im} z = 0 \text{ und }\mathop{\mathrm{Re} \le 0\}[/mm]
> > > [mm]G_{2} = \{z \in \IC: 0 < \mathop{\mathrm{Im} z < 1\}[/mm]
>
> > >
> > [mm]G_{3} = \{z \in \IC: \mathop{\mathrm{Re} z > 0 \text{ und } \mathop{\mathrm{Im} z > 0\}[/mm]
>
> >
> > >
> > > Finden sie biholomorphe Funktionen [mm]\mu_{1}[/mm] und [mm]\mu_{2}[/mm] mit
> > > [mm]\mu_{1}: G_{1} \to G_{2}[/mm] und [mm]\mu_{2}: G_{2} \to G_{3}.[/mm]
>
> > >
> >
> > > Hallo zusammen!
> > >
> > > Ich soll also zuerst eine biholomorphe Funktion finden, die
> > > die geschlitzte Ebene auf den Streifen mit 0 < Im z < 1
> > > abbildet. Ist es richtig davon auszugehen, dass ich dafür
> > > die komplexe Logarithmusfunktion verwenden kann, muss?
> > >
> > > Als zweites wird dann dieser Streifen auf den ersten
> > > Qudranten abgebildet. Ich denke, dass hierbei dann die
> > > komplexe Exponentialfunktion zur Anwendung kommt. Richtig?
> > >
> > > Nur wie kann ich das Bild von [mm]\mu_{1}[/mm] und [mm]\mu_{2}[/mm] jeweils
> > > eingrenzen?
> >
> > Mach es in zwei Schritten:
> >
> > 1. Was ist denn das Bild von [mm]G_1[/mm] unter [mm]\log z[/mm] (Hauptwert) ?
>
> Der Hauptzweig des Logarithmus bildet die geschlitzte Ebene
> auf den Streifen zw. [mm]-\pi*i[/mm] und [mm]\pi*i[/mm] ab.
>
> > 2. Wie kannst du diese Menge auf [mm]G_2[/mm] abbilden?
>
> Also [mm]\bruch{log(z)+i\pi}{2\pi}?[/mm]
> > Für [mm]\mu_2[/mm] überleg dir mal, wie das Urbild von [mm]\mu_2[/mm] unter
> > [mm]\exp[/mm] ausieht, oder anders ausgedrückt: Auf welche Menge
> > bildet der Hauptwert des Logarithmus die Menge [mm]\mu_2[/mm] ab?
>
> Hmmm... das blick' ich nicht.
Für welche z ist [mm] $\exp [/mm] z [mm] \in G_3$? [/mm] (Zerlege z in Real- un Imaginärteil!) Damit kennst du das Urbild von [mm] $G_3$ [/mm] unter [mm] $\exp$. [/mm] Jetzt musst du nur noch [mm] $G_2$ [/mm] auf diese Menge abbilden.
Viele Grüße
Rainer
|
|
|
|