www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Algebra" - bild,urbild
bild,urbild < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

bild,urbild: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:52 So 16.04.2006
Autor: gulcan

Aufgabe
seien f: X [mm] \to [/mm] Y eine Abbildung, A [mm] \subseteq [/mm] X, [mm] B\subseteq [/mm] Y. Zeige
a) A [mm] \subseteq f^{-1} [/mm] (f(A))
b) [mm] f(f^{-1} [/mm] (B))  [mm] \subseteq [/mm] B.
und belege durch Beispiele, dass die Gleichheit nicht immer gilt.


Wie muss ich vorgehen?

Für Hinweise, Lösungsansätze oder alles andere Hilfreiche wäre ich sehr dankbar.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.



        
Bezug
bild,urbild: Antwort (nicht fertig)
Status: (Antwort) noch nicht fertig Status 
Datum: 22:20 So 16.04.2006
Autor: vanguard2k


> seien f: X [mm]\to[/mm] Y eine Abbildung, A [mm]\subseteq[/mm] X, [mm]B\subseteq[/mm]
> Y. Zeige
>  a) A [mm]\subseteq f^{-1}[/mm] (f(A))
>  b) [mm]f(f^{-1}[/mm] (B))  [mm]\subseteq[/mm] B.
>  und belege durch Beispiele, dass die Gleichheit nicht
> immer gilt.
>  
>
> Wie muss ich vorgehen?
>
> Für Hinweise, Lösungsansätze oder alles andere Hilfreiche
> wäre ich sehr dankbar.
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>
>  

Hallo!

Also für a)

Wenn du dir einmal genau ansiehst, was [mm] f^{-1}(f(A))[/mm] bedeutet, nämlich: [mm] f^{-1}(f(A))=\{x \in Definitionsmenge : f(x) \in f(A)\}[/mm]
dann sollte a) kein Problem sein, wenn man die aussage auf die x, die aus A kommen, einschränkt

b) mach ich vllt. heute noch oder sonst morgen geht aber ähnlich: wenn man das ganze anhand der Definitionen durchexerziert geht das ziemlich in einer Wurst...

Bezug
                
Bezug
bild,urbild: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:33 So 16.04.2006
Autor: gulcan

danke für d. Bemühungen.



Bezug
        
Bezug
bild,urbild: Antwort
Status: (Antwort) fertig Status 
Datum: 22:52 So 16.04.2006
Autor: vanguard2k


>  b) [mm]f(f^{-1}[/mm] (B))  [mm]\subseteq[/mm] B.
>  und belege durch Beispiele, dass die Gleichheit nicht
> immer gilt.
>  
>
> Wie muss ich vorgehen?
>
> Für Hinweise, Lösungsansätze oder alles andere Hilfreiche
> wäre ich sehr dankbar.
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>
>  

Okay zu b)

Wenn man sich also nun so ein beliebiges y wählt:

[mm] y \in f(f^{-1}(B)) => y \in f(\{x \in Definitionsmenge : f(x) \in B\}) => y \in B [/mm]
und damit ist es gezeigt, denn wenn y in dieser Menge ist, dann ist y klarerweise auch in B

Und ein so ein Beispiel ist dann nicht schwer zu konstruieren

[mm] X=Y=\{1,2\} f: X \to Y: 1 \mapsto 1 2 \mapsto 1 [/mm]

Den Nachweis überlasse ich dir jetzt allerdings selber

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de