www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Wahrscheinlichkeitstheorie" - binomial
binomial < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

binomial: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:54 Mi 22.03.2006
Autor: mucha

Aufgabe 1
Aus einem Tarockkartenspiel mit 54 Karten wird eine Karte gezogen, der Kartenwert vorgemerkt, die Karte wieder zurückgelegt und gemischt. Diesen Versuch führt man sechsmal aus. Wie groß ist die Wahrscheinlichkeit, dabei viermal eine der 22 Tarockkarten zu ziehen? (Lös. 0,14512)

Aufgabe 2
Mit welcher Wahrscheinlichkeit erzielt man bei 5 Würfen mit einem idealen Würfel in mindestens drei Würfen wenigsten drei Augen bei jedem Wurf? (64/81)

Mit welcher Wahrscheinlichkeit erzielt man bei 4 Würfen mit einem idealen Würfel mindestens eine Eins oder Sechs? (Lös. 65/81)

Vielen lieben dank für die Antworten, habt mir wirklich sehr geholfen!

Anderes Problem: komm wieder nicht drauf.. =(
Wär echt super wenn ihr mir noch diese 2 Aufgaben erklären könntet

zu Aufgabe1: Ich versteh schon dass die Ereignisse unabhängig voneinander sind weil sie immer wieder zurück gelegt werden. Aber wie ich das rechnen soll.. keine Ahnung. Hab nicht mal einen Ansatz

Vielen lieben Dank
Liebe Grüße

        
Bezug
binomial: Aufgabe 1
Status: (Antwort) fertig Status 
Datum: 18:15 Mi 22.03.2006
Autor: Schlurcher

Hallo:

Es gibt  [mm] \vektor{6 \\ 4} [/mm] Möglichkeiten, wie die 4 richtigen Karten auf die 6 Züge verteilt werden können.

Aus diesen 15 gleichwarscheinlichen Möglichkeiten betrachten wir nun eine genauer.

Nämlich die leichteste: r r r r f f

r = richtige Karte gezogen also eine aus den 22
f = flsche Karte gezogen also eine aus dem Rest

Die Warscheinlichkeit für diese Möglichkeit ist also

(Warscheinlichkeit [mm] r)^4 [/mm] + (Warscheinlichkeit [mm] f)^2 [/mm]

Die Gesammtwarscheinlichkeit ist also 15 * (Warscheinlichkeit [mm] r)^4 [/mm] + (Warscheinlichkeit [mm] f)^2. [/mm]

Das Ergebnis stimmt. Ich habs nachgerechnet. Falls du jetzt nicht selbst drauf kommst erläutere ich es weiter.

Gruß Schlurcher

Bezug
        
Bezug
binomial: Aufgabe 2
Status: (Antwort) fertig Status 
Datum: 18:36 Mi 22.03.2006
Autor: Schlurcher

Teilaufgabe a):
Hier muss man die einzelwarscheinlichkeiten aufsummieren:

Bei genau drei Würfen wenigstens drei Augen pro Wurf + Bei genau vier Würfen wenigstens drei Augen pro Wurf + Bei genau fünf Würfen wenigstens drei Augen pro Wurf

Das Verfahren zur Berechnung der Einzelwahrscheinlichkeiten ist analog zu oben.

Teilaufgabe b):
Hier könnte man wie in Teilaufgabe a) vorgehen. Aber es ist weniger Arbeit mit dem Gegenteil zu arbeiten. Also

1 - "bei allen vier Würfen keine einer und sechser"

Grüße Schlurcher

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de