www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differentiation" - binomialverteilung
binomialverteilung < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

binomialverteilung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:14 Di 28.08.2007
Autor: admir

hallo alle zusammen,

ich hab im moment ein rießen problem.Da ich gestern nich in der schule gewesen bin, kann ich meine hausaufgabe nicht lösen. Ich weiß nicht was man hierbei machen muss:

[mm] (\vektor{n \\ k-1}+\vektor{n \\ k}=\vektor{n+1 \\ k} [/mm]

könnte mir da vielleicht jemand helfen?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

GRUß
ADMIR

        
Bezug
binomialverteilung: Antwort
Status: (Antwort) fertig Status 
Datum: 20:32 Di 28.08.2007
Autor: schachuzipus

Hallo admir,

schreibe dir doch mal die Definitionen für die beiden Ausdrücke auf der linken Seite hin und versuche, sie umzuformen:

Ich mache mal den Anfang...

Also [mm] \vektor{n\\k-1}+\vektor{n\\k}=\frac{n(n-1)(n-2)\cdot{}.....\cdot{}(n-\red{(k-1)}+1)}{(k-1)!}+\frac{n(n-1)(n-2)\cdot{}.....\cdot{}(n-k+2)(n-k+1)}{k!} [/mm]

[mm] =\frac{n(n-1)(n-2)\cdot{}.....\cdot{}(n-k+2)}{(k-1)!}+\frac{n(n-1)(n-2)\cdot{}.....\cdot{}(n-k+2)(n-k+1)}{k!} [/mm]


Hier kannst du mal gleichnamig machen, indem du den ersten Bruch mit k erweiterst, also [mm] \cdot{}\frac{k}{k}, [/mm] bedenke: es ist [mm] k\cdot{}(k-1)!=k! [/mm]

Anschließend [mm] n(n-1)(n-2)\cdot{}.....\cdot{}(n-k+2) [/mm] ausklammern und dann kommt das AHA ;-)

Vergleiche das dann mal mit dem Ausdruck für [mm] \vektor{n+1\\k} [/mm]


LG

schachuzipus



Bezug
                
Bezug
binomialverteilung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:44 Di 28.08.2007
Autor: admir

ich kapiere davon garnichts da das thema ganz neu ist.     egalllllllll ein weiterer tag ohne hausaufgaben      

Bezug
                        
Bezug
binomialverteilung: Antwort
Status: (Antwort) fertig Status 
Datum: 23:01 Di 28.08.2007
Autor: schachuzipus

Hallo admir,

nicht den Sand in den Kopf stecken oder so ;-)

Wie habt ihr denn [mm] \vektor{n\\k} [/mm] definiert?

Doch bestimmt als [mm] \frac{n(n-1)(n-2)\cdot{}.....\cdot{}(n-k+1)}{k!} [/mm]

Und [mm] k!=1\cdot{}2\cdot{}3\cdot{}.....\cdot{}k [/mm]

Also zB. [mm] 4!=1\cdot{}2\cdot{}3\cdot{}4 [/mm]


Alles weitere läuft doch eigentlich nur auf Bruchrechnen hinaus...


Gruß

schachuzipus

Bezug
                                
Bezug
binomialverteilung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:10 Di 28.08.2007
Autor: admir

danke das du mir helfen willst ,aber ich kapiere nicht die ganze sache an sich.

trotzdem danke

Bezug
                                        
Bezug
binomialverteilung: Antwort
Status: (Antwort) fertig Status 
Datum: 00:01 Mi 29.08.2007
Autor: rabilein1


> ich kapiere nicht die ganze sache an sich.

Das sieht auch irgendwie kompliziert aus mit n und k.

Aber ich mache das mal an einem Beispiel und setze einfach mal ganz unmathematisch voraus, dass das Ergebnis kein Zufall ist.

Es sei n=7 und k=3

Dann ist [mm] \vektor{7 \\ 3-1}+\vektor{7 \\ 3} [/mm] =

= [mm] \vektor{7 \\ 2}+\vektor{7 \\ 3} [/mm] =

= [mm] \bruch{7*6}{1*2}+\bruch{7*6*5}{1*2*3} [/mm] =

= [mm] \bruch{7*6*3}{1*2*3}+\bruch{7*6*5}{1*2*3} [/mm] =

= [mm] \bruch{7*6*3+7*6*5}{1*2*3} [/mm] =

= [mm] \bruch{7*6*(3+5)}{1*2*3} [/mm] =

= [mm] \bruch{7*6*8}{1*2*3} [/mm] =

= [mm] \bruch{8*7*6}{1*2*3} [/mm] =

= [mm] \vektor{8 \\ 3} [/mm] =

= [mm] \vektor{7+1 \\ 3} [/mm]



Bezug
        
Bezug
binomialverteilung: Antwort
Status: (Antwort) fertig Status 
Datum: 17:45 Mi 29.08.2007
Autor: Arastoteles

Hallo Admir,

Ich nehme mal an, dass ihr allgemeine Definition für:
[mm] \vektor{n \\ k} [/mm] =  [mm] \bruch{n!}{k!(n-k)!} [/mm] genommen habt.
Also heißt die gleichung:
[mm] \vektor{n \\ k} [/mm] + [mm] \vektor{n \\ k-1} [/mm] = [mm] \vektor{n+1 \\ k} [/mm]   =
[mm] \bruch{n!}{k!(n-k)!} [/mm] + [mm] \bruch{n!}{(k-1)!(n-(k-1))!} [/mm] = [mm] \bruch{(n+1)!}{k!((n+1)-k)!} [/mm]
Bei einem Beweis fängst du einfachheitshalber beim komplexeren Seite einer Gleichung bzw. Ungleichung an. Zunächst überlegst du dir, wie du diese beiden Terme zusammenfassen und somit gleichnamig machen kannst:
Da (k-1)! = [mm] \bruch{k!}{k} [/mm] ist und (n-(k-1))! = (n+1-k)! =(n-k)!*(n+1-k) ist, setzt Du diese zerlegten Terme in [mm] \bruch{n!}{(k-1)!(n+1-k)!} [/mm] ein. Daraus folg:
[mm] \vektor{n+1 \\ k} [/mm] = [mm] \bruch{n!}{k!(n-k)!} [/mm] + [mm] \bruch{n!}{(k-1)!(n+1-k)!} [/mm]
=  [mm] \bruch{n!}{k!(n-k)!} [/mm] + [mm] \bruch{n!*k}{k!(n-k)!(n+1-k)} [/mm]
(Durch den doppelbruch landet das k als Faktor in den Zähler.)
= [mm] \bruch{n!(n+1-k)}{k!(n-k)!(n+1-k)} [/mm] + [mm] \bruch{n!*k}{k!(n-k)!(n+1-k)} [/mm]
(Nun hast Du den ersten Term mit (n+1-k) erweitert, sodass die Brüche gleichnamig werden um sie anschließend zusammenzuafassen.)
= [mm] \bruch{n!*k+n!*(n+1-k)}{k!(n-k)!(n+1-k)} [/mm]
= [mm] \bruch{n!*k+n!*(n+1)-n!*k}{k!(n-k)!(n+1-k)} [/mm]
(Jetzt hast du das k ausgeklammert, sodass n!*k-n!*K = 0 ist.)
= [mm] \bruch{n!*(n+1)}{k!(n-k)!(n+1-k)} [/mm]
Als letzten Schritt musst du nur noch alles zusammenfassen:
Da n!*(n+1) = (n+1)! ist und (n-k)!*(n+1-k) = ((n+1)-k)! ist hast du dein Ergebnis : [mm] \bruch{(n+1)!}{k!((n+1)-k)!}. [/mm] Somit hast du gezeigt, dass [mm] \bruch{(n+1)!}{k!((n+1)-k)!} [/mm] = [mm] \vektor{n+1 \\ k} [/mm] ist. Und nochwas: k!(n-k)! = k!*(n-k)!. Daran soll dein scheitern nicht liegen. :-P

Mfg Aras






Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de