www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Kombinatorik" - binominalkoeffizient
binominalkoeffizient < Kombinatorik < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

binominalkoeffizient: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:02 Sa 12.09.2009
Autor: quade521

Hallo,
ich habe eine Frage zum Binomonalkoeffizient, weil der ja eigentlich die anzahl an Möglichkeiten ohne zurücklegen und ohne beachtung der Reihenfolge angibt. Im Pfaddiagramm kann ich mittels BN-Koeffizient ja die Anzahl der richtigen Pfade ausrechnen die dann noch mit der jeweiligen Pfadwahrscheinlichkeiten multipliziert werden muss.
Weshalb kann ich dafür den binominalkoeffizient verwenden und nicht
n!/(n-k)! , am BSp.
Test mit 3 Fragen man rät jeweils aus 4 Antwortmöglichkeiten. Wie warhrscheinlich ist es eine Antwort richtig zu haben

[mm] \vektor{3 \\ 1} [/mm] * [mm] (3/4)^2*(1/4) [/mm]

Möglichkeiten aus 3 Kugeln eine richtige Antwort zu ziehen = [mm] \vektor{3 \\ 1} [/mm]
mein prob dabei ist dass [mm] \vektor{3 \\ 1} [/mm] ohne Beachtung der Reihenfolge ist und somit falsch/richtig/faslch= richtig/flasch/falsch, weshalb kommt trotzdem die richtige Anzahl von Pfaden dabei raus?

        
Bezug
binominalkoeffizient: Antwort
Status: (Antwort) fertig Status 
Datum: 18:29 Sa 12.09.2009
Autor: Al-Chwarizmi


> Hallo,
>  ich habe eine Frage zum Binomonalkoeffizient, weil der ja
> eigentlich die anzahl an Möglichkeiten ohne zurücklegen
> und ohne beachtung der Reihenfolge angibt. Im Pfaddiagramm
> kann ich mittels BN-Koeffizient ja die Anzahl der richtigen
> Pfade ausrechnen die dann noch mit der jeweiligen
> Pfadwahrscheinlichkeiten multipliziert werden muss.
> Weshalb kann ich dafür den binominalkoeffizient verwenden
> und nicht
> n!/(n-k)! , am BSp.
>  Test mit 3 Fragen man rät jeweils aus 4
> Antwortmöglichkeiten. Wie warhrscheinlich ist es eine
> Antwort richtig zu haben
>
> [mm]\vektor{3 \\ 1}[/mm] * [mm](3/4)^2*(1/4)[/mm]
>  
> Möglichkeiten aus 3 Kugeln eine richtige Antwort zu ziehen
> = [mm]\vektor{3 \\ 1}[/mm]
>  mein prob dabei ist dass [mm]\vektor{3 \\ 1}[/mm]
> ohne Beachtung der Reihenfolge ist und somit
> falsch/richtig/faslch= richtig/flasch/falsch, weshalb kommt
> trotzdem die richtige Anzahl von Pfaden dabei raus?


hallo quade521,

einmal:  es heisst weder Binominal- noch Binomonal-
sondern Binomialkoeffizient.

Der Koeffizient [mm] \vektor{n\\k} [/mm] zählt genau die Anzahl der
Möglichkeiten, k mal das Wort "richtig" und (n-k) mal das
Wort "falsch" in eine Reihenfolge zu bringen. Bei n=3 und
k=1 sind dies die drei Möglichkeiten

     richtig/falchs/falshc
     faslhc/richtig/alfsch
     fsalch/schlaf/richtig

... oder so ähnlich ...


Al-Chw.





Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de