www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - brauche eine idee
brauche eine idee < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

brauche eine idee: untervektorraum
Status: (Frage) überfällig Status 
Datum: 03:35 Mo 26.11.2007
Autor: gossyk

hallo, ich brauche unbedingt einen denkanstoß,...

in meiner aufgabe geht es um einen Vektorraum n-ter Dimension über einem endlichen Körper.

ich soll bestimmen, wieviele verschiedene erzeugendensysteme es gibt, die q (q [mm] \le [/mm] n) linear unabhängige vektoren besitzen..

da der vektorraum über einem körper ist, ist dessen basis ja die kanonische einheitsbasis..., mit n vielen basisvektoren.
wie komme ich jetzt zu den darin steckenden q-anzähligen vektoren für ein erzeugendensystem?
was ich mir bisher überlegt hatte, war die basis von V zu nehmen, und da könnte erstmal jeder einzelne basisvektor alleinstehend ein erzeugendensystem für eine teilmenge von V sein (?) und dazu noch verknüpfungen der basisvektoren in beliebiger menge.. (also summe aus 2 der basisvektoren, summe aus 3 usw je nachdem wieviele n es gibt..)

sind meine überlegungen richtig? ich dneke mal nicht.... aber selbst wenn wie komme ich dann zum schluss die anzahl der systeme anzugeben für ein beliebiges n?

vielen dank im voraus..-.-

        
Bezug
brauche eine idee: Antwort
Status: (Antwort) fertig Status 
Datum: 09:13 Mo 26.11.2007
Autor: angela.h.b.


> hallo, ich brauche unbedingt einen denkanstoß,...
>  
> in meiner aufgabe geht es um einen Vektorraum n-ter
> Dimension über einem endlichen Körper.
>  
> ich soll bestimmen, wieviele verschiedene
> erzeugendensysteme es gibt, die q (q [mm]\le[/mm] n) linear
> unabhängige vektoren besitzen..

Hallo,

ach Du grüne Neune!
Ich wüßte ja zu gern, wie die Aufgabe im originalen Wortlaut heißt...

Festzustellen ist zunächst einmal: sämtliche Teilmengen, die nicht mindestens n linear unabhängige Vektoren enthalten, scheiden aus. (Warum???)

(Sämtliche Teilmengen, die mehr als n linear unabhängige Vektoren enthalten, scheiden auch aus, was aber kein Problem ist, da es solche gar nicht gibt. (Warum???))

Somit muß man wohl zunächst einmal herausfinden, wieviele verschiedene Basen Dein Vektorraum hat, und dann -
---
-hier schweige ich lieber: erstens ist mir die Aufgabenstellung nicht richtig klar, zweitens scheint es mir eine Rolle zu spielen, wieviele Elemnte der Körper hat und drittens würde ich ungern über kombinatorische Probleme, welche über die Bestimmung der Anzahl verschiedener Basen hinausgehen, sprechen wollen...

Gruß v. Angela

Bezug
        
Bezug
brauche eine idee: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 04:03 Mi 28.11.2007
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de