www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - charakteristische Funktion
charakteristische Funktion < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

charakteristische Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:41 Di 24.01.2006
Autor: sternchen19.8

Aufgabe
Es sei  D = {(x,y) [mm] \in \IR [/mm] : [mm] x^2+y^2 \le1}, [/mm] d.h. es ist D die Einheitsscheibe. Ferner sei [mm] x_D [/mm] die charakteristische Funktion von D. Berechne
[mm] \integral_{- \infty}^{ \infty} \integral_{- \infty}^{ \infty} {x_D(x,y) dx dy} [/mm]

Könnt ihr mir vielleicht dabei helfen, diese Aufgabe zu lösen.
Die Funktion [mm] x_D(x,y)=\begin{cases} 1, & \mbox{(x,y) } \in \mbox{ D} \\ 0, & \mbox{sonst } \mbox{ } \end{cases} [/mm]
Ich hab mir schon überlegt, dass man die Integrale auf 1 bzw. -1 setzen kann, aber weiter?...
Viele Grüße und schönen Abend noch

        
Bezug
charakteristische Funktion: Kreisfläche
Status: (Antwort) fertig Status 
Datum: 20:19 Di 24.01.2006
Autor: moudi

Hallo Sternchen

Das Integral ist dann einfach die Fläche von D.

mfG Moudi

Bezug
        
Bezug
charakteristische Funktion: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 20:49 Di 24.01.2006
Autor: sternchen19.8

Hallo du.
Vielen Dank fpür die schnelle Antwort.
Kannst du mir aber kurz erklären, wie du auf das Ergebnis kommst? Ich muss es ja berechnen. Denke  nicht, dass das Ergebnis so reicht.
Vielen Dank
sternchen

Bezug
                
Bezug
charakteristische Funktion: Defintion des Integrals?
Status: (Antwort) fertig Status 
Datum: 20:55 Di 24.01.2006
Autor: moudi

Hallo sternchen

Das steck doch in der Definition des Integrals rsp. ist die geometrische Interpretation des Integrals.

mfg Moudi

PS Wenn man wirklich das Integral ausrechnet mit Grenzen einsetzen und Satz von Fubini anwenden, wird man auch nicht schlauer.

mfG Moudi

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de