www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Trigonometrische Funktionen" - cosinusfunktion zeichnen
cosinusfunktion zeichnen < Trigonometr. Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Trigonometrische Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

cosinusfunktion zeichnen: Tipp
Status: (Frage) beantwortet Status 
Datum: 21:34 So 14.12.2014
Autor: needmath

Aufgabe
ich will die folgenden funktionen im Zeitintervall 0 ≤ t < 3ms zeichnen

[mm] h_1(t)=1V*cos(\bruch{200\pi}{s}*t) [/mm]

[mm] h_2(t)=1,5V*cos(\bruch{4189}{s}*t+2,094) [/mm]

[mm] h_3(t)=2V*cos(\bruch{1000\pi}{s}*t+4,189) [/mm]

kann es sein das [mm] h_1(t)) [/mm] eine konstante ist? egal was ich für t einsetze, ich bekomme immer 1 raus

aber das kann er gar nicht sein, weil es cosinus ist. es muss ja wellenförmig sein.

wie zeichne ich jetzt [mm] h_1(t) [/mm] in ein Spannung-Zeit-Diagramm ein?

        
Bezug
cosinusfunktion zeichnen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:25 So 14.12.2014
Autor: abakus


> ich will die folgenden funktionen im Zeitintervall 0 ≤ t
> < 3ms zeichnen

>

> [mm]h_1(t)=1V*cos(\bruch{200\pi}{s}*t)[/mm]

>

> [mm]h_2(t)=1,5V*cos(\bruch{4189}{s}*t+2,094)[/mm]

>

> [mm]h_3(t)=2V*cos(\bruch{1000\pi}{s}*t+4,189)[/mm]
> kann es sein das [mm]h_1(t))[/mm] eine konstante ist? egal was ich
> für t einsetze, ich bekomme immer 1 raus

>
Hallo,
versuche es mal mit t=(1/400) s.

Gruß Abakus

> aber das kann er gar nicht sein, weil es cosinus ist. es
> muss ja wellenförmig sein.

>

> wie zeichne ich jetzt [mm]h_1(t)[/mm] in ein Spannung-Zeit-Diagramm
> ein?

Bezug
        
Bezug
cosinusfunktion zeichnen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:43 So 14.12.2014
Autor: Marcel

Hallo,

> ich will die folgenden funktionen im Zeitintervall 0 ≤ t
> < 3ms zeichnen
>  
> [mm]h_1(t)=1V*cos(\bruch{200\pi}{s}*t)[/mm]

natürlich kann das keine konstante Funktion sein. Überlege Dir mal:

    [mm] $\IR \ni [/mm] t [mm] \longmapsto \cos(t)$ [/mm]

ist [mm] $2\pi$-periodisch. [/mm]

Wenn Du nun $a > [mm] 0\,$ [/mm] hast, dann kannst Du Dir überlegen, dass

    [mm] $\IR \ni [/mm] t [mm] \longmapsto \cos(a*t)$ [/mm]

[mm] $\frac{2\pi}{a}=\frac{1}{a}*(2\pi)=\frac{1}{a}*T$-periodisch [/mm] ist! [mm] ($T=2\pi$!) [/mm]

Motivieren kann ich das mit einem Beispiel: Wir betrachten

    $g [mm] \colon \IR \ni [/mm] t [mm] \longmapsto \cos(2\pi*t)\,,$ [/mm]

es ist also [mm] $a=2\pi$! [/mm]

An den Stellen $t' > 0$ waren beim Kosinus die Funktionswerte

    [mm] $\cos(t\,')$ [/mm]

vorhanden. Für [mm] $t=\frac{1}{a}t'=\frac{1}{2\pi}*t'$ [/mm] ist dann

    [mm] $g(t)=\cos(2\pi*t)=\cos(2\pi*\tfrac{1}{2\pi}t')\,,$ [/mm]
(bzw. [mm] $g(t)=\cos(a*t)=\cos(a*\tfrac{1}{a}t')=\cos(t')$) [/mm]

der Wert [mm] $\cos(t')$ [/mm] taucht bei [mm] $g\,$ [/mm] also schon "früher" (wegen $a > [mm] 1\,$) [/mm] auf. (Ganz sauber
ist diese Argumentation nicht, am Besten hätte ich nur $t [mm] \in [0,2\pi]$ [/mm] zugelassen, aber
ich denke, man sieht, was passiert.

Eine andere Möglichkeit ist, sich zu fragen: Wann nimmt [mm] $\cos$ [/mm] erstmalig auf
der positiven x-Achse den Wert [mm] $0\,$ [/mm] an und wann [mm] $g\,$.) [/mm]

Gruß,
  Marcel

Bezug
                
Bezug
cosinusfunktion zeichnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:03 So 14.12.2014
Autor: needmath

sieht die funktion [mm] h_1(t) [/mm] ungefähr so aus? bei [mm] h_1(t) [/mm] sollte der faktor vor t [mm] 2000\pi [/mm] sein und nicht [mm] 200\pi [/mm]

[Dateianhang nicht öffentlich]


bei [mm] h_2(t) [/mm] und [mm] h_3(t) [/mm] habe noch einen Summanden innerhalb cosinus. wie muss ich das berücksichtigen?

Dateianhänge:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
Bezug
                        
Bezug
cosinusfunktion zeichnen: Antwort
Status: (Antwort) fertig Status 
Datum: 23:43 So 14.12.2014
Autor: leduart

Hallo
1.wenn du t=1/1000s=1ma einsetzt hast du doch genau [mm] 1V*sin2\pi [/mm] also bis 1 ms gerade eine Periode.
2. sin(0)=0
3. sin hat nirgends eine senkrechte Tangente.
zeichne einen notmalen sin bis [mm] 6\pi [/mm] und dann schreib bei [mm] 2\pi [/mm] 1 hin usw
Zeit und Spannungsachse müssen ja nicht den gleichen maßstab haben, denn 1V hat nichts mit 1ms zu tun.
f(x+a) ist die um a nach links verschobene funktion f(x) beispiel: [mm] (x+3)^2 [/mm] ist die Normalparabel aber mit Scheitel in -a
Gruß leduart


Bezug
                        
Bezug
cosinusfunktion zeichnen: Antwort
Status: (Antwort) fertig Status 
Datum: 23:38 Mo 15.12.2014
Autor: Marcel

Hallo,

> sieht die funktion [mm]h_1(t)[/mm] ungefähr so aus? bei [mm]h_1(t)[/mm]
> sollte der faktor vor t [mm]2000\pi[/mm] sein und nicht [mm]200\pi[/mm]
>  
> [Dateianhang nicht öffentlich]
>  
>
> bei [mm]h_2(t)[/mm] und [mm]h_3(t)[/mm] habe noch einen Summanden innerhalb
> cosinus. wie muss ich das berücksichtigen?

das kommt drauf an, wie er drinsteht. Allgemein:
Wenn Du, mit $a [mm] \not=0\,,$ $g(x)=f(ax+b)\,$ [/mm] hast, dann ist es sinnvoll

    [mm] $g(x)=f(ax+b)=f(a*(x+\tfrac{b}{a}))$ [/mm]

zu schreiben, dann siehst Du "Verschiebung" und "Streckung/Stauchung" (letzteres,
für $a > [mm] 1\,$ [/mm] bzw. $0 < a < 1$ - kannst Du Dir vorstellen, was ein negatives [mm] $a\,$ [/mm]
bewirkt?).

Wenn Du etwa

    $x [mm] \mapsto 2*\sin(3x+4)$ [/mm]

betrachtest, dann schreibst Du

    $x [mm] \mapsto 2*\sin(3*(x+\tfrac{4}{3}))\,.$ [/mm]

Die letzte Funktion kann man mit dem Graphen des Sinus etwa wie folgt
erstellen:
Man verschiebt den Sinus um [mm] $4/3\,$ [/mm] nach links.
(Dann hat man den Graphen von $x [mm] \mapsto \sin(x+4/3)$!) [/mm]

Diese Funktion hat noch Periode [mm] $2\pi\,,$ [/mm] jetzt stauchen wir sie, so dass
die neue Funktion Periode [mm] $2\pi/3$ [/mm] hat.
(Dann hat man den Graphen von $x [mm] \mapsto \sin(3*(x+4/3))$!) [/mm]

Schlussendlich sind alle Funktionswerte zu verdoppeln!
(Dann hat man den Graphen von $x [mm] \mapsto 2*\sin(3*(x+4/3))$!) [/mm]

Speziell für [mm] $\sin$ [/mm] bzw. [mm] $\cos$, [/mm] siehe auch

    []http://www.schule-studium.de/Mathe/Sinusfunktion-Amplitude-Periodenlaenge-Phasenverschiebung.html

Gruß,
  Marcel

Bezug
        
Bezug
cosinusfunktion zeichnen: Antwort
Status: (Antwort) fertig Status 
Datum: 23:35 So 14.12.2014
Autor: DieAcht

Hallo needmath!


Es gilt:

      [mm] $-1\le\cos(x)\le [/mm] 1$ für alle [mm] x\in\IR. [/mm]

Ist der Funktionswert [mm] x\in(-\infty,-1)\cup(1,\infty), [/mm] also [mm] x\not\in[-1,1], [/mm]
dann hast du einen Fehler gemacht. Damit erkennt man
dann auch ob ein Graph überhaupt richtig sein kann.


Gruß
DieAcht

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Trigonometrische Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de