www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Moduln und Vektorräume" - dedekind-identität
dedekind-identität < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

dedekind-identität: lineare algebra
Status: (Frage) beantwortet Status 
Datum: 17:47 Sa 24.11.2007
Autor: windbeutel88

Aufgabe
Beweisen oder widerlegen Sie die folgenden Aussagen über Untervektorräume U1,U2,U3 eines Vektorraums
V :
(i) U1 ⊆ U3 ⇒ U1 + (U2 ∩ U3) = (U1 + U2) ∩ U3 (Dedekind-Identität)
(ii) U1 + (U2 ∩ U3) = (U1 + U2) ∩ (U1 + U3) (Distributivgesetz)
(iii) U1 ∩ (U2 + U3) = (U1 ∩ U2) + (U1 ∩ U3) (Distributivgesetz)

Kann mir hier bitte jemand helfen... Komm einach nicht drauf wie ich da anfang....

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
dedekind-identität: Antwort
Status: (Antwort) fertig Status 
Datum: 22:00 Sa 24.11.2007
Autor: angela.h.b.


> Beweisen oder widerlegen Sie die folgenden Aussagen über
> Untervektorräume U1,U2,U3 eines Vektorraums
>  V :
>  (i) U1 ⊆ U3 ⇒ U1 + (U2 ∩ U3) = (U1 + U2)
> ∩ U3 (Dedekind-Identität)

>  Kann mir hier bitte jemand helfen... Komm einach nicht
> drauf wie ich da anfang....


Hallo,

[willkommenmr].

Da Du neu bei uns bist, lies Dir bitte einmal die Forenregeln durch, insbesondere weise ich auf den Passus über eigene Lösungsansätze hin.

Wir interessieren uns brennend dafür, was Du bisher getan und überlegt hast, an welcher Stelle Dein Problemliegt, und was der Grund dafür ist, daß Du keine Anfang findest. Nur wenn wir dies wissen, können wir sinnvoll helfen.

Bei dieser Aufgabe ist es zunächst wichtig, daß Du weißt, was ein Unterraum ist, wie der Schnitt v. Mengen definiert ist und wie die Summe v. Vektorräumen.
Wenn Du das nicht weißt, solltest Du Dich spätestens jetzt schlau machen.

Dann ist es natürlich recht hilfreich, wenn Du eine Ahnung davon hast, ob Du die Behauptung beweisen oder widerlegen möchtest.

Zu diesem Zwecke würde ich mir mal ein, zwei, drei  Beispiele machen.

Nimm zwei Vektorräume, von denen der eine Teilmenge des anderen ist, das ist ja die Voraussetzung.
Dann nimm Dir eine dritten Raum und guck, was U1 + (U2 ∩ U3) ergibt und was  (U1 + U2) ∩ U3, und ob beides gleich ist. Variiere die dritte Menge und guck, ob sich am ergebnis etws ändert.


Ich habe z.B. als [mm] U_1 [/mm] mal die x-Achse genommen, als [mm] U_3 [/mm] die xy-Ebene, als [mm] U_2 [/mm] die yz-Ebene.

Wie ist Dein Verdacht, und was mußt Du dafür zeigen?

Gruß v. Angela












Bezug
                
Bezug
dedekind-identität: nachfrage
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:56 Mi 28.11.2007
Autor: Nadinejena

Ich hatte genau dieselbe Aufgabe als Übungsserie hier an der Uni...muss sie morgen abgeben und wollte nur sagen der tipp war super:)  hatte ganz schnell meinen beweis, würde mich nur mal interessieren nach welchen kriterien du dir das beispiel ausgesucht hast.



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de