www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differenzialrechnung" - definitions bereich
definitions bereich < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

definitions bereich: idee
Status: (Frage) beantwortet Status 
Datum: 14:39 So 18.01.2009
Autor: grafzahl123

Aufgabe
es soll der def.-bereich von [mm] f(x)=\wurzel{x^3+x^2} [/mm] und dessen ableitung bestimmt werden

f´(x)= [mm] \bruch{3x^2+2x}{2\wurzel{x^3+x^2} } [/mm]  sollte hoffentlich stimmen.
für den def.bereich ist bei der ableitung eigentlich nur der nenner interessant.
der darf nich null sien und das unter der wurzel nicht negativ.
ich hba mir dann überlegt man könnte 3 fälle unterscheiden:
1. x=0 => geht nicht
2. x>0 => x>-1
3. x<0 => x>-1 (da bin ich mir nich so ganz sicher)

so jetzt hab ich die grenzen für den def.-bereich nr we schreibe ich das sinnvoll auf.
kann man das vielleicht irgendwie so machen:
(-1,0) vereinigt mit (0,+unendlich)

ich habe die frage in keinem nderen forum gestellt.

würde mich freuen, wenn mir einer helfen könnte

        
Bezug
definitions bereich: Antwort
Status: (Antwort) fertig Status 
Datum: 14:55 So 18.01.2009
Autor: M.Rex

Hallo

Löse mal die beiden (Un)gleichungen.

Also

1.: Nenner=0

[mm] 2\wurzel{x³+x²}=0 [/mm]
[mm] \gdw\wurzel{x³+x²}=0 [/mm]
[mm] \gdw x^{3}+x²=0 [/mm]
[mm] \gdw(x²+1)*x=0 [/mm]
[mm] \Rightarrow [/mm] x=0 oder x²+1=0

Letzteres kann nicht sein, also bleibt als eine Def. Lücke nur x=0

2.: Wurzel nicht definiert, also [mm] x^{3}+x²<0 [/mm]

[mm] x^{3}+x²<0 [/mm]
[mm] \gdw-1>x [/mm]

Also hast du als zweite Einschränkung x<-1

Somit darf x nicht Null sein und muss grösser als -1 sein, damit f'(x) existiert.
Deine Schreibweise ist dafür aber okay, ansonsten nimm halt die "ausschliessende Schreibweise"

Also [mm] D=\IR/\{(-\infty;-1)\cup0\} [/mm]
Marius


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de