www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Determinanten" - det.
det. < Determinanten < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Determinanten"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

det.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:26 Sa 19.04.2008
Autor: lenz

Aufgabe
sei K ein körper und [mm] A=(a_{ij}) \in [/mm] M(n [mm] \times [/mm] n,K).
zeigen sie dass dann gilt:
[mm] det(a_{ij})=det((-1)^{i+j} a_{ij}). [/mm]
hinweis:weisen sie nach dass die abbildung [mm] M(n\times [/mm] n,K) [mm] \rightarrow [/mm] K
A [mm] \mapsto det((-1)^{i+j}a_{ij} [/mm] eine determinantenabbildung ist

hallo
kann mir jemand sagen was mit [mm] det(a_{ij}) [/mm] gemeint ist?
soll das det(A) sein,oder die entwicklung nach irgendeiner zeile oder spalte?
gruß lenz

        
Bezug
det.: Antwort
Status: (Antwort) fertig Status 
Datum: 21:50 Sa 19.04.2008
Autor: logarithmus


> sei K ein körper und [mm]A=(a_{ij}) \in[/mm] M(n [mm]\times[/mm] n,K).
>  zeigen sie dass dann gilt:
>  [mm]det(a_{ij})=det((-1)^{i+j} a_{ij}).[/mm]
>  hinweis:weisen sie
> nach dass die abbildung [mm]M(n\times[/mm] n,K) [mm]\rightarrow[/mm] K
> A [mm]\mapsto det((-1)^{i+j}a_{ij}[/mm] eine determinantenabbildung
> ist
>  hallo
>  kann mir jemand sagen was mit [mm]det(a_{ij})[/mm] gemeint ist?

Ich denke, hier ist gemeint: det(A) = det [mm] ((a_{ij})). [/mm]

>  soll das det(A) sein,oder die entwicklung nach irgendeiner
> zeile oder spalte?
>  gruß lenz

Also hier meint man, wenn das Vorzeichen von jedem Eintrag [mm] a_{ij} [/mm] von + nach - bzw. von - nach + geändert wird, dass es sich weiterhin um eine Determinanten handelt, und zwar dieselbe Determinante mit demselben Wert:
also [mm] det((a_{ij})) [/mm] = [mm] det((-1)^{i+j}(a_{ij})). [/mm]

Für den Beweis versuche die Formel von Leibnitz zu benutzen.
[mm] $det((a_{ij})) [/mm] = [mm] \summe_{(\sigma_1,\cdots,\sigma_n)\in perm(n)}sign((\sigma_1,\cdots,\sigma_n))a_{\sigma_1,1}\cdot...\cdot a_{\sigma_n,n}$ [/mm] .
Dann ist
[mm] $det((-1)^{i+j}(a_{ij})) [/mm] = [mm] \summe_{(\sigma_1,\cdots,\sigma_n)\in perm(n)}sign((\sigma_1,\cdots,\sigma_n))(-1)^{\sigma_1+1}a_{\sigma_1,1}\cdot...\cdot (-1)^{\sigma_n+n}a_{\sigma_n,n} [/mm] = ... $

Gruss,
logarithmus

Bezug
                
Bezug
det.: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:57 Sa 19.04.2008
Autor: lenz

danke
ich werds versuchen
lenz

Bezug
                
Bezug
det.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:15 So 20.04.2008
Autor: briddi

Wenn man die Aufgabe ohne Leibniz lösen möchte, sondern so wie in dem Hinweis angegeben,müsste es doch aber ausreichen die Determinanteneigenschaften Linearität,alternierend und normiert zu zeigen oder?
und wenn die gelten, dann folgt aus der Eindeutigkeit der Determinantenabbildung die Bahauptung.

Bezug
                        
Bezug
det.: Antwort
Status: (Antwort) fertig Status 
Datum: 16:05 So 20.04.2008
Autor: felixf

Hallo

> Wenn man die Aufgabe ohne Leibniz lösen möchte, sondern so
> wie in dem Hinweis angegeben,müsste es doch aber ausreichen
> die Determinanteneigenschaften Linearität,alternierend und
> normiert zu zeigen oder?

Genau.

>  und wenn die gelten, dann folgt aus der Eindeutigkeit der
> Determinantenabbildung die Bahauptung.

Ja, so ist es. Und das Nachrechnen ist hier nicht allzu schwer, hauptsaechlich ist's Schreibarbeit :)

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Determinanten"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de