www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - det >0 => positiv definit
det >0 => positiv definit < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

det >0 => positiv definit: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 17:43 Di 03.07.2007
Autor: CPH

Aufgabe
Sei n [mm] \ge [/mm] 1 eine ganze Zahl, und sei
A = [mm] (a_{ij})_{1\le i;j \le n} \in M_n(\IR) [/mm]
eine symmetrische Matrix.
Zeigen Sie, dass die folgenden Aussagen äquivalent sind.
1. A ist positiv definit.
2. [mm] det(A_k) [/mm] > 0 für alle k [mm] \in \IN [/mm] mit 1 [mm] \le [/mm] k [mm] \le [/mm] n, wobei
[mm] A_k [/mm] := [mm] (a_{ij})_{1\lei;j\le k} \in M_k(\IR): [/mm]
3. Alle Eigenwerte von A gehören zu [mm] \IR [/mm] >0.
Hinweis : Sie können die Aussage (2 =>1) durch Induktion nach n beweisen.

Hallo,

ich habe offensichtlich die Vorlesung zu lange nicht nachbearbeitet,
gibt es irgendwelche leicht nachvollziehbaren Beweise?

ich habe noch keine Ahnung, wie ich irgendetwas zeigen soll.

das einzige was mir klar ist ist, das:

Alle EW (Eigenwerte) von A >0, A symmetrisch => A diagonalisierbar => Produkt der EWs = Determinante. also aus 3 folgt direkt 2

gibt es ähnliche Argumente für  2=> 1 und 1=>3?  

1=> 3 müsste doch  so gehen:

A symmetrisch => A normal => A diagonalisierbar.
A pos. Definit => [mm] \forall \lambda [/mm]  auf der Hauptdiagonalen gilt, dass sie >0 sind
=> alle EW's sind  auf der Spur von der Diagonalmatrix (ähnlich zu A) und alle sind >0 da auch diese Matrix pos. Definit.

wenn diese implikationen stimmen fehlt nur noch

2=>1.

Kann mir jemand eine Idee für 2=>1 geben, oder den beweis teilweise ausführen?

MfG

Cph

Vielen Dank für eure Hilfe.



        
Bezug
det >0 => positiv definit: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:20 Do 05.07.2007
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de