www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Determinanten" - det & skalar
det & skalar < Determinanten < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Determinanten"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

det & skalar: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:42 Mi 16.01.2013
Autor: Aguero

Aufgabe
Verwenden sie die Eindeutigkeit der Determinante, um zu zeigen, dass für v,u,w [mm] \in \IR^{3} [/mm] gilt:

det [mm] \vektor{u^{t} \\ v^{t} \\ w^{t}} [/mm] = <u [mm] \times [/mm] v, w> .

Hallo,
reicht es die det auszurechnen und das kreuzprodukt&skalar zu bilden und danach das ergebnis der unbekannten anzuschauen?
wenn ich dieses mache, dann stimmt diese gleichung.

nun irritiert mich, dass ich die eindeutigkeit der determinante benutzen soll..


danke

        
Bezug
det & skalar: Antwort
Status: (Antwort) fertig Status 
Datum: 09:59 Do 17.01.2013
Autor: felixf

Moin!

> Verwenden sie die Eindeutigkeit der Determinante, um zu
> zeigen, dass für v,u,w [mm]\in \IR^{3}[/mm] gilt:
>  
> det [mm]\vektor{u^{t} \\ v^{t} \\ w^{t}}[/mm] = <u [mm]\times[/mm] v, w> .
>
>  Hallo,
> reicht es die det auszurechnen und das kreuzprodukt&skalar
> zu bilden und danach das ergebnis der unbekannten
> anzuschauen?

Nun, das zeigt die Gleichheit, das sollst du aber explizit nicht machen.

>  wenn ich dieses mache, dann stimmt diese gleichung.
>  
> nun irritiert mich, dass ich die eindeutigkeit der
> determinante benutzen soll..

Du sollst wie folgt vorgehen:

betrachte die Funktion $f(u, v, w) := [mm] \langle [/mm] u [mm] \times [/mm] v, w [mm] \rangle$. [/mm] Zeige, dass diese
(a) multilinear ist
(b) antisymmetrisch und
(c) fuer $u = [mm] e_1, [/mm] v = [mm] e_2, [/mm] w = [mm] e_3$ [/mm] den Wert 1 liefert.

Die Eindeutigkeit der Determinante sagt dann, dass $f(u, v, w) = [mm] \det \vektor{u^t \\ v^t \\ w^t}$ [/mm] gelten muss.

LG Felix


Bezug
                
Bezug
det & skalar: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:51 Do 17.01.2013
Autor: Aguero


> Zeige, dass diese
>   (a) multilinear ist
>   (b) antisymmetrisch und

ist mit (b) alternierend

>   (c) fuer [mm]u = e_1, v = e_2, w = e_3[/mm] den Wert 1 liefert.

und mit (c) normiert gemeint?

ich weiß leider nicht wie ich es anstelle, im netz finde ich auch nichts anwendbares ...
kannst du mir da weiterhelfen?

Bezug
                        
Bezug
det & skalar: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:07 Do 17.01.2013
Autor: Stueckchen

Hey,

Gibt es auch eine Möglichkeit in der Regel von Sarrus z.B. die Eindeutigkeit zu begründen?
Also mit dem Zeigen der Gleichheit auf die Eigenschaften zu schließen?

Bezug
                                
Bezug
det & skalar: Antwort
Status: (Antwort) fertig Status 
Datum: 09:06 Fr 18.01.2013
Autor: felixf

Moin,

> Gibt es auch eine Möglichkeit in der Regel von Sarrus z.B.
> die Eindeutigkeit zu begründen?
>  Also mit dem Zeigen der Gleichheit auf die Eigenschaften
> zu schließen?

natuerlich geht das, aber in der Aufgabenstellung ist etwas anderes gefordert.

LG Felix



Bezug
                        
Bezug
det & skalar: Antwort
Status: (Antwort) fertig Status 
Datum: 09:05 Fr 18.01.2013
Autor: felixf

Moin!

> > Zeige, dass diese
>  >   (a) multilinear ist
>  >   (b) antisymmetrisch und
>   ist mit (b) alternierend
>  >   (c) fuer [mm]u = e_1, v = e_2, w = e_3[/mm] den Wert 1
> liefert.
>  und mit (c) normiert gemeint?

Ja, so kann man es auch nennen :)

> ich weiß leider nicht wie ich es anstelle, im netz finde
> ich auch nichts anwendbares ...
>  kannst du mir da weiterhelfen?

Nun, du hast hier doch ein paar Eigenschaften, die du nachweisen musst. Tu das doch einach. Da brauchst du nicht viel im Netz fuer zu finden...

Schreib doch erstmal auf, wie die Eigenschaften (multilinear, alternierend, normiert) definiert sind. Und dann rechne damit los.

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Determinanten"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de