www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Abbildungen und Matrizen" - determinante richtig?
determinante richtig? < Abbildungen+Matrizen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Abbildungen und Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

determinante richtig?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:37 Fr 23.09.2011
Autor: sqflo

Aufgabe
Sei [mm] A=$\pmat{ 0 & E_m \\ E_n & 0 }\in \mathbb{R}^{(m+n)\times(m+n)}$. [/mm]
Hierbei bezeichnen [mm] $E_n [/mm] Einheitsmatrizen und 0 die entsprechenden Nullmatrizen in [mm] $\mathbb{R}^{m\times n}$ [/mm] bzw. [mm] $\mathbb{R}^{n\times m}$. [/mm]

Berechnen Sie det(A).

Hallo,

das ergebnis $det(A)=(-1)^  {nm}$ habe ich urch induktion bewiesen:

sei [mm] $A_n=\pmat{ 0 & E_m \\ E_n & 0 }$ [/mm] wie oben für ein festes [mm] $m\in\mathbb{N} [/mm] und alle n definiert.

n=1:
mit der laplace-formel (die ist hier sehr bequem anzuwenden, da in der m+1-ten zeile nur der ersten spalte eine 1 steht) ist [mm] $det(A_1)=(-1)^{(m+1)+1}\cdot\det(E_m)=(-1)^2*(-1)^m=(-1)^{1\cdot m}$. [/mm]

Sei die aussage nun für [mm] $n\in\mathbb{N} [/mm] richtig.

n->n+1:
wieder mit laplace:
[mm] $det(A_{n+1})=$det\pmat{ 0 & E_m \\ E_ {n+1} & 0 }=(-1)^m*det(A_n)=(-1)^m*(-1)^{mn}=(-1)^{m(n+1)}$. [/mm]

ist das so richtig oder habe ich etwas übersehen?


lg flo


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
determinante richtig?: Antwort
Status: (Antwort) fertig Status 
Datum: 10:36 Sa 24.09.2011
Autor: angela.h.b.


> Sei A=[mm]\pmat{ 0 & E_m \\ E_n & 0 }\in \mathbb{R}^{(m+n)\times(m+n)}[/mm].
>  
> Hierbei bezeichnen [mm]$E_n[/mm] Einheitsmatrizen und 0 die
> entsprechenden Nullmatrizen in [mm]\mathbb{R}^{m\times n}[/mm][/mm]
> bzw. [mm]\mathbb{R}^{n\times m}[/mm].[/mm]
>  
> Berechnen Sie det(A).
>  Hallo,
>  
> das ergebnis [mm]det(A)=(-1)^ {nm}[/mm] habe ich urch induktion
> bewiesen:


EDIT: die Antwort paßt nicht zur gestellten Frage. S. ullims Beitrag.
Hallo,

ich denke nicht daß dies gelingen kann:

betrachte

[mm] det\pmat{0&0&1\\0&1&0\\1&0&0}=-1 \not=(-1)^{1*2}=1. [/mm]

Gruß v. Angela


>  
> sei [mm]A_n=\pmat{ 0 & E_m \\ E_n & 0 }[/mm][/mm] wie oben für ein
> festes [mm]$m\in\mathbb{N}[/mm] und alle n definiert.
>  
> n=1:
>  mit der laplace-formel (die ist hier sehr bequem
> anzuwenden, da in der m+1-ten zeile nur der ersten spalte
> eine 1 steht) ist
> [mm]det(A_1)=(-1)^{(m+1)+1}\cdot\det(E_m)=(-1)^2*(-1)^m=(-1)^{1\cdot m}[/mm].
>  
> Sei die aussage nun für [mm]$n\in\mathbb{N}[/mm] richtig.
>  
> n->n+1:
>  wieder mit laplace:
>  [mm]det(A_{n+1})=[/mm][mm] det\pmat{ 0 & E_m \\ E_ {n+1} & 0 }=(-1)^m*det(A_n)=(-1)^m*(-1)^{mn}=(-1)^{m(n+1)}$.[/mm] [/mm]
>  
> ist das so richtig oder habe ich etwas übersehen?
>  
>
> lg flo
>  
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  


Bezug
        
Bezug
determinante richtig?: Antwort
Status: (Antwort) fertig Status 
Datum: 11:31 Sa 24.09.2011
Autor: ullim

Hi,

ich denke Dein Ergebnis ist richtig, da man durch n*m-maliges Vertauschen der Zeilen die Matrix A in die Form

[mm] B=\pmat{ E_n & 0 \\ 0 & E_m } [/mm] bringen kann.

Die Determinante von B ist aber nach dem Kästenchensatz [mm] det(B)=det(E_n)*det(E_m)=1 [/mm] und wegen der Vertauschungen gilt

[mm] det(A)=(-1)^{n*m}*det(B)=(-1)^{n*m} [/mm]

Das Gegenbeispiel von Angela ist nicht richtig, da es nicht die Form [mm] \pmat{ 0 & E_m \\ E_n & 0 } [/mm] hat.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Abbildungen und Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de