www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Stetigkeit" - dichte teilmengen & stetigkeit
dichte teilmengen & stetigkeit < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

dichte teilmengen & stetigkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:18 So 18.12.2011
Autor: Mathe-Lily

Aufgabe
Seien f,g [mm] \in C^{0} (\IR) [/mm] mit f(x)=g(x) für alle x [mm] \in \IQ. [/mm]
Zeigen Sie f=g, also f(x)=g(x) für alle x [mm] \in \IR. [/mm]

( f,g [mm] \in C^{0} (\IR) [/mm] heißt: f,g sind stetig in [mm] \IR) [/mm]

Hallo!
Ich habe den Tipp bekommen, dass man hier mit dem Wissen, dass wenn f und g stetig sind, auch f-g stetig sind und dass [mm] \IQ [/mm] dicht in [mm] \IR [/mm] ist weiter kommt.
Daher habe ich folgende Überlegung:
Diese Dichtheit heißt ja nur, dass es zu je 2 reellen Zahlen immer eine rationale Zahl gibt, die dazwischen liegt. Wenn also (f-g)(x)=0 (Zwischenfrage: schreibt man das dann so? ) für alle rationalen x gilt, aber nicht für alle reellen x, dann könnte f-g nicht mehr stetig sein.
Ist diese Überlegung richtig?
Und wie könnte ich das zeigen?

Ich würde mich sehr freuen, wenn mir jemand da weiter helfen könnte!
Grüßle, Lily

        
Bezug
dichte teilmengen & stetigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 16:01 So 18.12.2011
Autor: donquijote


> Seien f,g [mm]\in C^{0} (\IR)[/mm] mit f(x)=g(x) für alle x [mm]\in \IQ.[/mm]
> Zeigen Sie f=g, also f(x)=g(x) für alle x [mm]\in \IR.[/mm]
>  
> ( f,g [mm]\in C^{0} (\IR)[/mm] heißt: f,g sind stetig in [mm]\IR)[/mm]
>  Hallo!
>  Ich habe den Tipp bekommen, dass man hier mit dem Wissen,
> dass wenn f und g stetig sind, auch f-g stetig sind und
> dass [mm]\IQ[/mm] dicht in [mm]\IR[/mm] ist weiter kommt.
> Daher habe ich folgende Überlegung:
>  Diese Dichtheit heißt ja nur, dass es zu je 2 reellen
> Zahlen immer eine rationale Zahl gibt, die dazwischen
> liegt. Wenn also (f-g)(x)=0 (Zwischenfrage: schreibt man
> das dann so? )

ja, kann man so schreiben

> für alle rationalen x gilt, aber nicht für
> alle reellen x, dann könnte f-g nicht mehr stetig sein.
>  Ist diese Überlegung richtig?
>  Und wie könnte ich das zeigen?

Da [mm] \IQ [/mm] in [mm] \IR [/mm] dicht liegt, gibt es zu jeder reellen Zahl x eine Folge [mm] (q_n) [/mm] von rationalen Zahlen mit [mm] \lim q_n=x [/mm]
Damit kannst du [mm] (f-g)(x)=(f-g)(\lim q_n)=... [/mm]
betrachten

>  
> Ich würde mich sehr freuen, wenn mir jemand da weiter
> helfen könnte!
>  Grüßle, Lily


Bezug
                
Bezug
dichte teilmengen & stetigkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:39 So 18.12.2011
Autor: Mathe-Lily

hm... vielleicht stehe ich jetzt auf dem schlauch, aber ich verstehe nicht, was mir das bringen könnte...
das (f-g)(lim [mm] q_{n} [/mm] kann man umformen in lim [mm] ((f-g)(q_{n}). [/mm] aber dann?

wäre super, wenn ihr mir noch weiter helfen könntet!
Grüßle, Lily

Bezug
                        
Bezug
dichte teilmengen & stetigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 17:00 So 18.12.2011
Autor: donquijote

nach voraussetzung ist [mm] (f-g)(q_n)=0 [/mm]

Bezug
                                
Bezug
dichte teilmengen & stetigkeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:10 So 18.12.2011
Autor: Mathe-Lily

oh :-D richtig!
Danke :-)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de