www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differenzialrechnung" - die Kettenregel
die Kettenregel < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

die Kettenregel: korrektur
Status: (Frage) beantwortet Status 
Datum: 16:40 Mo 14.12.2009
Autor: verzweiflung

Aufgabe
Leiten sie ab und vereinfachen sie das ergebnis!
a) [mm] f(x)=2(5-x)^{-1} [/mm]
b) h(r)= [mm] \wurzel{7r-r^{2}} [/mm]
c) f(x)=2cos(1-x)
d) [mm] f(x)=\bruch{1}{3}sin(x^{2}) [/mm]
e) f(x)= [mm] \bruch{3a}{1+x^{2}} [/mm]
f) [mm] f(x)=\wurzel{ax-1} [/mm]
[mm] g)\bruch{1}{18}*(3x+2)^{6} [/mm]

ich habe diese frage noch in keinem anderen Forum gestellt.

Hallo,
ja ich weiß das ist sehr viel, aber das ist nur ein bruchteil der aufgaben, die wir bekommen haben...:) außerdem geht es schnell, wenn man den dreh raus hat :D hab hier mal die ergebnisse, wenn einer von euch checken könnte ob das stimmt, wäre ich sehr dankbar!

ist a) [mm] f'(x)=2*(5-x)^{-2} [/mm]
     b) [mm] h'(r)=\bruch{1}{2\wurzel{7r-r^{2}}}*(-2r+1) [/mm]
     c) f'(x)= 2sin(1-x)
     d) [mm] f'(x)=\bruch{1}{3}cos(x^{2})*2x [/mm]
     e) ist da [mm] h(x)=\bruch{3a}{1+x^{2}} [/mm]   und   g(x)=x ??? dann weiß ich,  wie es weiter geht
     f) ist da [mm] h(x)=\wurzel{x} [/mm]    und    g(x)=ax-1 ???
    g)f'(x)= [mm] (3x+2)^{5} [/mm]

danke schonmal, die Verzweiflung



        
Bezug
die Kettenregel: Antwort
Status: (Antwort) fertig Status 
Datum: 16:50 Mo 14.12.2009
Autor: fencheltee


> Leiten sie ab und vereinfachen sie das ergebnis!
>  a) [mm]f(x)=2(5-x)^{-1}[/mm]
>  b) h(r)= [mm]\wurzel{7r-r^{2}}[/mm]
>  c) f(x)=2cos(1-x)
>  d) [mm]f(x)=\bruch{1}{3}sin(x^{2})[/mm]
>  e) f(x)= [mm]\bruch{3a}{1+x^{2}}[/mm]
>  f) [mm]f(x)=\wurzel{ax-1}[/mm]
>  [mm]g)\bruch{1}{18}*(3x+2)^{6}[/mm]
>  ich habe diese frage noch in keinem anderen Forum
> gestellt.
>  
> Hallo,
>  ja ich weiß das ist sehr viel, aber das ist nur ein
> bruchteil der aufgaben, die wir bekommen haben...:)
> außerdem geht es schnell, wenn man den dreh raus hat :D
> hab hier mal die ergebnisse, wenn einer von euch checken
> könnte ob das stimmt, wäre ich sehr dankbar!
>  
> ist a) [mm]f'(x)=2*(5-x)^{-2}[/mm]

[ok]

>       b) [mm]h'(r)=\bruch{1}{2\wurzel{7r-r^{2}}}*(-2r+1)[/mm]

hier musst du die innere funktion nochmal überprüfen

>       c) f'(x)= 2sin(1-x)

[ok]

>       d) [mm]f'(x)=\bruch{1}{3}cos(x^{2})*2x[/mm]

[ok]

>       e) ist da [mm]h(x)=\bruch{3a}{1+x^{2}}[/mm]   und   g(x)=x ???
> dann weiß ich,  wie es weiter geht

hier die quotientenregel anwenden
edit: schreib den nenner um in eine potenz die im zähler steht, dann gehts auch wie gewohnt nach sturer kettenregel

>       f) ist da [mm]h(x)=\wurzel{x}[/mm]    und    g(x)=ax-1 ???

wenn das äussere und innere ableitung darstellen soll ja

>      g)f'(x)= [mm](3x+2)^{5}[/mm]

[ok]

>  
> danke schonmal, die Verzweiflung
>  
>  

gruß tee

Bezug
                
Bezug
die Kettenregel: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 17:00 Mo 14.12.2009
Autor: verzweiflung

Aufgabe
siehe oben

danke schonmal!
bei b) hab ich falsch abgeshrieben:) ist b) =...(-2r+7) ???
bei f) meinte ich äußere und innere
aber bei e) hab ich noch nicht ganz den durchblick... soll ich im nenner statt [mm] x^2 [/mm] einfach x*x schreiben oder wie? und wie bringt mir das was?

stimmt jetzt also b) und bei e) brauche ich noch einen schubs :)

grüße

Bezug
                        
Bezug
die Kettenregel: Antwort
Status: (Antwort) fertig Status 
Datum: 17:04 Mo 14.12.2009
Autor: fencheltee


> siehe oben
>  danke schonmal!
>  bei b) hab ich falsch abgeshrieben:) ist b) =...(-2r+7)

schon besser

> ???
>  bei f) meinte ich äußere und innere
>  aber bei e) hab ich noch nicht ganz den durchblick... soll
> ich im nenner statt [mm]x^2[/mm] einfach x*x schreiben oder wie? und
> wie bringt mir das was?
>  
> stimmt jetzt also b) und bei e) brauche ich noch einen
> schubs :)

naja du hast ja  [mm] \bruch{3a}{1+x^{2}} [/mm]
das kann man anders schreiben als
[mm] 3a*(1+x^2)^{-1} [/mm]
und das solltest du nun in den griff kriegen

>  
> grüße


gruß tee

Bezug
                                
Bezug
die Kettenregel: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:10 Mo 14.12.2009
Autor: verzweiflung

Ach na klar! danke!

Bezug
                                
Bezug
die Kettenregel: korrektur
Status: (Frage) beantwortet Status 
Datum: 17:21 Mo 14.12.2009
Autor: verzweiflung

Aufgabe
siehe oben

so jetzt bin ichs nochmal:
ist f'(x) dann also = [mm] -6ax(1+x^2)^{-2} [/mm]

hoff, hoff, hoff :)
grüße

Bezug
                                        
Bezug
die Kettenregel: Antwort
Status: (Antwort) fertig Status 
Datum: 17:24 Mo 14.12.2009
Autor: MathePower

Hallo verzweiflung,

> siehe oben
>  so jetzt bin ichs nochmal:
>  ist f'(x) dann also = [mm]-6ax(1+x^2)^{-2}[/mm]


Stimmt. [ok]


>  
> hoff, hoff, hoff :)
>  grüße


Gruss
MathePower

Bezug
                                                
Bezug
die Kettenregel: korrektur
Status: (Frage) beantwortet Status 
Datum: 17:28 Mo 14.12.2009
Autor: verzweiflung

Aufgabe
siehe oben

juhuuu :)
und bei f) kommt als endergebnis [mm] f'(x)=a*(\bruch{1}{2\wurzel{ax-1}}) [/mm]
raus?
vielen vielen dank!

Bezug
                                                        
Bezug
die Kettenregel: Antwort
Status: (Antwort) fertig Status 
Datum: 17:31 Mo 14.12.2009
Autor: Steffi21

Hallo, so ist es korrekt, Steffi

Bezug
                                                                
Bezug
die Kettenregel: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:34 Mo 14.12.2009
Autor: verzweiflung

JUHUUUUUUUUU ;D
danke an euch alle

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de