www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - diffbare Funktionen
diffbare Funktionen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

diffbare Funktionen: Frage
Status: (Frage) beantwortet Status 
Datum: 13:58 Mi 26.01.2005
Autor: VHN

Hallo, Leute!

Ich habe hier eine sehr schwere Aufgabe und ich weiss einfach nicht, wie sie gehen soll. ich habe versucht, die erste teilaufgabe zu loesen, aber ich komm einfach nicht drauf. Darum hoffe ich, dass ihr mir weiterhelfen koennt, oder mir tipps geben koennt, wie ich sie anpacken kann. Danke!

Sei f: [mm] \IR \to \IR [/mm] eine zweimal stetig differenzierbare Funktion, d.h. f ist auf ganz [mm] \IR [/mm] zweimal differenzierbar un die zweite Ableitung f'' ist stetig.
Sei K : [-1;1] [mm] \to [/mm] [0;1] definiert durch
K(x) [mm] =\begin{cases} 1+x, & \mbox{für } -1 \le x \le0 \\ 1-x, & \mbox{für } 0 \le x \le 1 \end{cases} [/mm]

(a) Beweise, dass  [mm] \integral_{-1}^{1} [/mm] {K(x) f``(xh) dx} = [mm] \bruch{f(h)+f(-h)-2f(0)}{h^{2}} [/mm]
wobei gilt: alle h [mm] \not= [/mm] 0.

(b) Sei h > 0. Zeige, dass es ein [mm] \alpha \in [/mm] [-h;h] gibt mit  
[mm] \integral_{-1}^{1} [/mm] {K(x) f``(xh) dx} = [mm] f``(\alpha). [/mm]

(c) Beweise die folgende Formel fuer die 2. Ableitung.
f``(0) =  [mm] \limes_{h\rightarrow\0} \bruch{f(h)+f(-h)-2f(0)}{h^{2}}. [/mm]

Erst mal verstehe ich nicht, bei der (a), was das f`` ist. Wenn ich das f`` nicht kenne, wie kann ich es dann integrieren?
Dann weiss ich nicht, welche Form von K(x) ich da nehmen soll, weil doch die Grenzen vom Integral von -1 bis 1 laufen. Muss ich dann beide "Varianten" von K(x) nehmen?
Es steht in der Aufspaltung von K(x) naemlich nicht drin, was fuer K(x) gilt, wenn x zwischen -1 und 1 liegt.

Ich waere euch dankbar, wenn ich mir zeigen koenntet, wie ich die Aufgabe loesen kann.Vielen Dank fuer eure Muehe!

ciao!


        
Bezug
diffbare Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:19 Mi 26.01.2005
Autor: ghost

Also, f'' ist einfach die zweite Ableitung, wie sie genau aussieht weiß man nicht, jedoch existiert eine Stammfunktion, nämlich f' + c.  Da das Integral von -1 bis 1 geht, ist es wohl am Besten wenn du es zuerst aufspaltest, dann kannst du auch K(x) einsetzen.

[mm] \integral_{-1}^{1} [/mm] {K(x) f''(xh) [mm] dx}=\integral_{-1}^{0} [/mm] {K(x) f''(xh) dx} [mm] +\integral_{0}^{1} [/mm] {K(x) f''(xh) dx} = [mm] \integral_{-1}^{0} [/mm] {(1+x) f''(xh) dx} [mm] +\integral_{-0}^{1} [/mm] {(1-x) f''(xh) dx}.

Jetzt kannst du noch ein bißchen umformen und einiges davon wird wegfallen... Beim Integrieren von f''(xh) musst du dann ein bißchen aufpassen, Stichwort Kettenregel, so kommt dann auch das [mm] h^{2} [/mm] zu Stande.  Hab es nicht ausgerechnet, aber ich denke mal, dass du so ein bißchen weiter kommen wirst.

Bezug
                
Bezug
diffbare Funktionen: weitere frage
Status: (Frage) beantwortet Status 
Datum: 23:11 Mi 26.01.2005
Autor: VHN

Hallo, ghost!

Danke für deine Antwort. Ich glaube, ich habe die (a) lösen können.
Aber ich verstehe immer noch nicht, wie ich die (b) machen kann.
Kannst du mir vielleicht bitte einen weiteren Tipp geben, wie ich die (b)lösen kann? I
Hat die aufgabe (b) vielleicht was mit dem Mittelwertsatz zu tun?
Ich danke dir für deine Mühe!

Vielen Dank!
Ciao!

Bezug
                        
Bezug
diffbare Funktionen: Aufgabenteile b) und c)
Status: (Antwort) fertig Status 
Datum: 18:43 Mo 31.01.2005
Autor: AdvDiaboli

Ja, Mittelwertsatz ist hier eine Goldader, wobei du ihn bei der Aufgabe gleich zweimal anwenden musst (willst ja etwas über die 2-te Ableitung wissen, und hast Ausdruck mit [mm] h^2). [/mm] Dann bekommst du in der  b) den Ausdruck in Aufgabe a) auf der rechten Seite herraus und mit Aufgabe a) bist du dann fertig.
Aufgabe c) sollte dann mit b) von alleine gehen.
viele Grüße
Michael

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de