www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - differenzierbare Funktion
differenzierbare Funktion < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

differenzierbare Funktion: Übung
Status: (Frage) beantwortet Status 
Datum: 09:07 Fr 06.02.2015
Autor: Striker_03

Aufgabe
Sei [mm] $g:\IR^3 \to \IR^2$ [/mm] eine differenzierbare Funktion mit

$g'(3,1,2)$=  [mm] \begin{pmatrix} -1 & 3 & -2 \\ 2 & 1 & 4 \end{pmatrix} [/mm]

Wir definieren die Funktion [mm] $f:\IR^2 \to \IR^2$ [/mm] mit [mm] $f=(f_1,f_2) [/mm] durch [mm] $f(x,y)=g(3x^2y,e^{x-y},x+y^2)$. [/mm]

Berechnen Sie [mm] $\frac{df_2}{dx}(1,1)$ [/mm] und [mm] $\frac{df_1}{dy}(1,1)$ [/mm]

Hallo,

wie gehe ich bei dieser Aufgabe voran? ich soll ja die partiellen Ableitungen berechnen.

ich verstehe um ehrlich zu sein nicht warum jetzt die Matrix da ist..
[mm] $f_1 [/mm] = x$ und [mm] $f_2=y$? [/mm]

das heißt mein [mm] $f_1= (3x^2,e^{x-y},x)$? [/mm] und das soll ich nach x ableiten und (1,1) einsetzen?

LG

        
Bezug
differenzierbare Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 09:19 Fr 06.02.2015
Autor: fred97


> Sei [mm]g:\IR^3 \to \IR^2[/mm] eine differenzierbare Funktion mit
>  
> [mm]g'(3,1,2)[/mm]=  [mm] \begin{pmatrix} -1 & 3 & -2 \\ 2 & 1 & 4 \end{pmatrix}[/mm]
>  
> Wir definieren die Funktion [mm]$f:\IR^2 \to \IR^2$[/mm] mit
> [mm]$f=(f_1,f_2)[/mm] durch [mm]$f(x,y)=g(3x^2y,e^{x-y},x+y^2)$.[/mm]
>  
> Berechnen Sie [mm]\frac{df_2}{dx}(1,1)[/mm] und
> [mm]\frac{df_1}{dy}(1,1)[/mm]
>  Hallo,
>  
> wie gehe ich bei dieser Aufgabe voran? ich soll ja die
> partiellen Ableitungen berechnen.
>  
> ich verstehe um ehrlich zu sein nicht warum jetzt die
> Matrix da ist..

Die brauchst Du für die Berechnung von  $ [mm] \frac{df_2}{dx}(1,1) [/mm] $ und $ [mm] \frac{df_1}{dy}(1,1) [/mm] $.

Sollte das nicht so lauten:

$ [mm] \frac{\partial f_2}{ \partial x}(1,1) [/mm] $ und $ [mm] \frac{\partial f_1}{ \partial y}(1,1) [/mm] $  ?



>  [mm]f_1 = x[/mm] und [mm]f_2=y[/mm]?

Nein.


>  
> das heißt mein [mm]f_1= (3x^2,e^{x-y},x)[/mm]? und das soll ich
> nach x ableiten und (1,1) einsetzen?

Nein.

Wegen  $ [mm] g:\IR^3 \to \IR^2 [/mm] $  ist [mm] g=(g_1,g_2) [/mm]

Damit ist  [mm] $f(x,y)=(f_1(x,y),f_2(x,y))=g(3x^2y,e^{x-y},x+y^2)=(g_1(3x^2y,e^{x-y},x+y^2), g_2(3x^2y,e^{x-y},x+y^2))$. [/mm]

Also:

[mm] f_1(x,y)=g_1(3x^2y,e^{x-y},x+y^2) [/mm]

und

[mm] f_2(x,y)=g_2(3x^2y,e^{x-y},x+y^2). [/mm]

Nun berechne  $ [mm] \frac{\partial f_2}{ \partial x}(1,1) [/mm] $ und $ [mm] \frac{\partial f_1}{ \partial y}(1,1) [/mm] $ mit der Kettenregel(!).

Dabei brauchst Du Die partiellen Ableitungen von [mm] g_1 [/mm] und [mm] g_2 [/mm] im Punkt (3,1,2). Diese stehen in der Matrix $g'(3,1,2)$

FRED



>  
> LG


Bezug
                
Bezug
differenzierbare Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:44 Fr 06.02.2015
Autor: Striker_03

Danke für deine Antwort.

Ich habe noch viele offene Fragen..

$ [mm] f_2(x,y)=g_2(3x^2y,e^{x-y},x+y^2). [/mm] $ das soll nach x abgeleitet werden.

wenn ich [mm] g_2 [/mm] mal noch so lasse und die Klammer: [mm] g_2(6x,e^{x-y},1) [/mm]

Dabei brauchst Du Die partiellen Ableitungen von $ [mm] g_1 [/mm] $ und $ [mm] g_2 [/mm] $ im Punkt (3,1,2). Diese stehen in der Matrix $ g'(3,1,2) $

wo steht denn [mm] g_2 [/mm] in der Matrix? Ich finde es ziemlich schwer da ich diese Schreibweise zum ersten Mal sehe bzw. diese Aufgabenstellung hatte noch keine ähnliche Aufgabenstellung..

LG


Bezug
                        
Bezug
differenzierbare Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 10:22 Fr 06.02.2015
Autor: fred97


> Danke für deine Antwort.
>  
> Ich habe noch viele offene Fragen..
>  
> [mm]f_2(x,y)=g_2(3x^2y,e^{x-y},x+y^2).[/mm] das soll nach x
> abgeleitet werden.
>  
> wenn ich [mm]g_2[/mm] mal noch so lasse und die Klammer:
> [mm]g_2(6x,e^{x-y},1)[/mm]

Nein, das ist nicht die Ableitung von [mm] f_2 [/mm] nach x.

Bemühe die Kettenregel !

>  
> Dabei brauchst Du Die partiellen Ableitungen von [mm]g_1[/mm] und
> [mm]g_2[/mm] im Punkt (3,1,2). Diese stehen in der Matrix [mm]g'(3,1,2)[/mm]
>  
> wo steht denn [mm]g_2[/mm] in der Matrix?

Es ist



$ g'(3,1,2) $=  $ [mm] \begin{pmatrix} -1 & 3 & -2 \\ 2 & 1 & 4 \end{pmatrix} [/mm] $

Was steht denn in der 2. Zeile dieser Matrix ?????

FRED



>  Ich finde es ziemlich
> schwer da ich diese Schreibweise zum ersten Mal sehe bzw.
> diese Aufgabenstellung hatte noch keine ähnliche
> Aufgabenstellung..
>  
> LG
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de