www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Abbildungen" - dim V = dim W isomorphismus
dim V = dim W isomorphismus < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

dim V = dim W isomorphismus: Korrektur, Tipp
Status: (Frage) beantwortet Status 
Datum: 04:11 So 19.01.2014
Autor: Cccya

Aufgabe
Es seien V und W zwei reelle Vektorräume mit dim(V)=dim(W) <  [mm] \infty, [/mm] sowie
f: V --> W eine lineare Abbildung. Zeigen Sie die Äquivalenz der folgenden Aussagen:
(i)Die Abbildung f ist injektiv.
(ii) Die Abbildung f ist surjektiv.
(iii) Die Abbildung f ist bijektiv.

Meine Idee: Wenn f injektiv ist gilt ker(f)=(0) und damit nach der Dimensionsformel dim(V)= dim(im(f))+dim(ker(f))= dim(im(f))+dim(0)=dim(W) (nach Voraussetzung) also dim(im(f))=dim(W) also ist im(f)=W und damit ist f surjektiv.

Umgekehrt gilt im(f)=W wenn f surjektiv ist und damit dim(V)= dim(W)+dim(ker(f))=dim(W) also muss dim(ker(f))=0 sein und ker(f)=(0). Somit ist f dann auch injektiv. Eine Abbildung die injektiv und surjektiv ist, ist bijektiv.

Reicht das? Muss ich noch zeigen, dass bei Injektivität ker(f)=(0) und bei Surjektivität im(f)=W?
Vielen Dank.

        
Bezug
dim V = dim W isomorphismus: Antwort
Status: (Antwort) fertig Status 
Datum: 08:08 So 19.01.2014
Autor: Sax

Hi,

> Es seien V und W zwei reelle Vektorräume mit dim(V)=dim(W)
> <  [mm]\infty,[/mm] sowie
> f: V --> W eine lineare Abbildung. Zeigen Sie die
> Äquivalenz der folgenden Aussagen:
> (i)Die Abbildung f ist injektiv.
>  (ii) Die Abbildung f ist surjektiv.
>  (iii) Die Abbildung f ist bijektiv.
>  Meine Idee: Wenn f injektiv ist gilt ker(f)=(0) und damit
> nach der Dimensionsformel dim(V)= dim(im(f))+dim(ker(f))=
> dim(im(f))+dim(0)=dim(W) (nach Voraussetzung) also
> dim(im(f))=dim(W) also ist im(f)=W und damit ist f
> surjektiv.
>
> Umgekehrt gilt im(f)=W wenn f surjektiv ist und damit
> dim(V)= dim(W)+dim(ker(f))=dim(W) also muss dim(ker(f))=0
> sein und ker(f)=(0). Somit ist f dann auch injektiv. Eine
> Abbildung die injektiv und surjektiv ist, ist bijektiv.
>  
> Reicht das? Muss ich noch zeigen, dass bei Injektivität
> ker(f)=(0) und bei Surjektivität im(f)=W?
>  Vielen Dank.

Diese beiden Äquivalenzen sind ja wesentlicher Bestandteil deines Beweises. Also müssen sie nachgewiesen werden. Entweder geschah dies schon in der Vorlesung, dann kannst du dich natürlich darauf berufen oder du musst das hier leisten.

Die Struktur des Beweises (z.B. $ (i) [mm] \Rightarrow [/mm] (ii) [mm] \Rightarrow [/mm] (iii) [mm] \Rightarrow [/mm] (i) $ oder $ ( (i) [mm] \gdw [/mm] (ii) ) $ und $ ((i) [mm] \wedge [/mm] (ii) ) [mm] \gdw [/mm] (iii) $ )  könnte noch etwas deutlicher werden. Zumindest solltest du den letzten Satz deines zweiten Absatzes als neuen Absatz schreiben.

Hinweis : Du kannst diesen Satz benutzen, um dir die Hälfte der Arbeit bei den Nachweisen aus deinem anderen Thema "Isomorphismus" zu sparen.

Gruß Sax.


Bezug
                
Bezug
dim V = dim W isomorphismus: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 15:31 So 19.01.2014
Autor: Cccya

Ok also ker f = (0) kann ich beweisen, aber im f = W folgt doch im Prinzip direkt aus der Definition von Surjektivität oder? Die sagt ja gerade das jedes Element der Zielmenge W durch die Funktion abgebildet wird? Und das Bild ist der Teil von W der durch f abgebildet wird, also muss ja im f = W sein. Kann man dann einfach schreiben:

[mm] \forall [/mm] w [mm] \in [/mm] W [mm] \exists [/mm] v [mm] \in [/mm] V: f(v) = W  daraus folgt {f(v) [mm] \in [/mm] W , v [mm] \in [/mm] V} = im f = W

und danke für den Hinweis, spart wirklich arbeit.

Bezug
                        
Bezug
dim V = dim W isomorphismus: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:20 Di 21.01.2014
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de