www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra Sonstiges" - direktes Komplement, ON-Basis
direktes Komplement, ON-Basis < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

direktes Komplement, ON-Basis: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 11:49 Di 14.10.2008
Autor: uniklu

Aufgabe
Gegeben sei U = < (1,2,3,-1,2), (2,4,7,2,-1) >, [mm] u_1, u_2 \in \IR^5 [/mm]

a) 2 direkte Komplemente von U berechnen
b) orthogonales Komplement [mm] U^\perp [/mm] von U
c) ON-Basen von U bzw. [mm] U^\perp [/mm]



Hallo!

Ich habe wieder drei Fragen bezüglich der obigen Aufgabe :)

ad a) Ich habe eine lineare Hülle U gegeben. Damit ist es mir möglich jeden Vektor in dem Teilraum durch eine Linearkombination zu erzeugen

Nun könnte ich also eine Vektor [mm] \overrightarrow{v} [/mm] = (v1,v2,v3,v4,v5) folgend erzeugen:

v = [mm] \lambda_1 (1,2,3,-1,2)^T [/mm] +  [mm] \lambda_1 (2,4,7,2,-1)^T [/mm]


V = U [mm] \oplus\ [/mm] W <=> [mm] \begin{cases} \mbox{(i)} & V = U + W,\\ \mbox{(ii)} & U \cap W \not= {0}\end{cases} [/mm]

dabei handelt es sich bei W um den komplementären Teilraum.

Meine Frage hier ist also, wie komme ich auf W? Berechnung von W?

ad b)
hier kann ich mir nur vorstellen was gemeint ist.
[mm] \forall [/mm] u [mm] \in U^\perp [/mm] | u [mm] \perp [/mm] s [mm] \forall [/mm] s [mm] \in [/mm] U

die Frage ist, wie berechnet man das?

ad c)
hier wende ich einfach Gram-Schmidt an?


ich hoffe jemand kann mir helfen!

lg



(Beispiel auch hier gepostet: http://www.matheplanet.com/matheplanet/nuke/html/viewtopic.php?topic=109987)

        
Bezug
direktes Komplement, ON-Basis: Antwort
Status: (Antwort) fertig Status 
Datum: 13:28 Di 14.10.2008
Autor: fred97

Zu a):  Addiere das (-2) - fache des ersten Vektors in U auf den zweiten. Dann siehst Du

U = < (1,2,3,-1,2), (0,0,1,4,-5) >

Nun schau Dir mal Folgendes an:
(1,2,3,-1,2)
(0,0,1,4,-5)
(0,1,0,0,0)
(0,0,0,1,0)
(0,0,0,0,1)


Kannst Du hieraus einen Komplementärraum zu U ablesen ?

Zu b): Hier ist ein Komplementärraum W von U gesucht mit:

u [mm] \perp [/mm] w für jedes u in U und jedes w in W

Zu c)

Wende Gram - Schmidt auf eine Basis von U an, dann erhälst Du eine ONB von U. Mache es ebenso für [mm] U^\perp [/mm]


FRED

Bezug
                
Bezug
direktes Komplement, ON-Basis: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 16:40 Di 14.10.2008
Autor: uniklu

Hallo Fred!

Danke für die Antwort!

Tut mir leid, ich weiß nicht wie man hier den komplementärraum ablesen kann.

Bezug
                        
Bezug
direktes Komplement, ON-Basis: Antwort
Status: (Antwort) fertig Status 
Datum: 16:43 Di 14.10.2008
Autor: fred97

Z.B.:  <(0,1,0,0,0), (0,0,0,1,0), (0,0,0,0,1) >

FRED

Bezug
                                
Bezug
direktes Komplement, ON-Basis: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 17:18 Di 14.10.2008
Autor: uniklu

Danke!

Nur zum Verständnis:

U besteht aus [mm] u_1 [/mm] und [mm] u_2 [/mm] - beide sind natürlich l.u.

V muss aber aus 5 Elementen bestehen.

W muss nun aus 3 Elementen bestehen, weil 5 = 2 + 3. Diese 3 Elemente müssen auch l.u. sein. Damit man nun auf 5 Elemente kommt, müssen alle Vektoren aus W und U l.u. sein.

im Prinzip wäre dann <(0,2,0,0,0), (0,0,0,2,0), (0,0,0,0,2)> auch ein Komplement?


Ich habe mir aus dem "erweiterten" System:
(1,2,3,-1,2)
(0,0,1,4,-5)
(0,1,0,0,0)
(0,0,0,1,0)
(0,0,0,0,1)

ein LGS erstellt.

[mm] x_2 [/mm] = [mm] \lambda_1 [/mm]
[mm] x_3 [/mm] = [mm] \lambda_2 [/mm]
[mm] x_4 [/mm] = [mm] \lambda_3 [/mm]
[mm] x_5 [/mm] = [mm] \lambda_4 [/mm]

=> [mm] x_1 [/mm] = - 2 [mm] \lambda_2 [/mm] - 3 [mm] \lambda_2 [/mm] + [mm] \lambda_3 [/mm] - 2 [mm] \lambda_4 [/mm]
=> [mm] x_3 [/mm] = - 4 [mm] \lambda_3 [/mm] - 5 [mm] \lambda_4 [/mm]

[mm] \vektor{x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5} [/mm] = [mm] \lambda_1 \vektor{-2 \\ 0 \\ 0 \\ 0 \\ 0} \lambda_2 \vektor{-3 \\ 0 \\ 0 \\ 0 \\ 0} [/mm] + [mm] \lambda_3 \vektor{1 \\ 0 \\ -4 \\ 0 \\ 0} [/mm] + [mm] \lambda_4 \vektor{-2 \\ 0 \\ -5 \\ 0 \\ 0} [/mm]


sofern ich mich nicht verrechnet habe solle dann

[mm] \vektor{(-2,0,0,0,0) \\ (-3,0,0,0,0) \\ (1,0,-4,0,0) \\ (-2,0,-5,0,0)} [/mm] * [mm] \vektor{x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5} [/mm] = 0 ergeben, wobei der Variablenvektor aus U stammt.

Bezug
                                        
Bezug
direktes Komplement, ON-Basis: Antwort
Status: (Antwort) fertig Status 
Datum: 17:29 Di 14.10.2008
Autor: fred97


> Danke!
>  
> Nur zum Verständnis:
>  
> U besteht aus [mm]u_1[/mm] und [mm]u_2[/mm] - beide sind natürlich l.u.

Besser: U hat die Basus [mm] {u_1, u_2} [/mm]

>  
> V muss aber aus 5 Elementen bestehen.


Besser: eine Basis von V muss aber aus 5 Elementen bestehen.


>  
> W muss nun aus 3 Elementen bestehen,

Besser: eine Basis von W muss nun aus 3 Elementen bestehen

weil 5 = 2 + 3. Diese

> 3 Elemente müssen auch l.u. sein. Damit man nun auf 5
> Elemente kommt, müssen alle Vektoren aus W und U l.u.
> sein.
>  
> im Prinzip wäre dann <(0,2,0,0,0), (0,0,0,2,0),
> (0,0,0,0,2)> auch ein Komplement?

Ja, aber das gleiche, denn

<(0,2,0,0,0), (0,0,0,2,0),  (0,0,0,0,2)>  = <(0,1,0,0,0), (0,0,0,1,0),  (0,0,0,0,1)>



>  
>
> Ich habe mir aus dem "erweiterten" System:
>  (1,2,3,-1,2)
>  (0,0,1,4,-5)
>  (0,1,0,0,0)
>  (0,0,0,1,0)
>  (0,0,0,0,1)
>
> ein LGS erstellt.

>



Was Du ab hier treibst ist mir nicht klar


FRED

  

> [mm]x_2[/mm] = [mm]\lambda_1[/mm]
>  [mm]x_3[/mm] = [mm]\lambda_2[/mm]
>  [mm]x_4[/mm] = [mm]\lambda_3[/mm]
>  [mm]x_5[/mm] = [mm]\lambda_4[/mm]
>  
> => [mm]x_1[/mm] = - 2 [mm]\lambda_2[/mm] - 3 [mm]\lambda_2[/mm] + [mm]\lambda_3[/mm] - 2
> [mm]\lambda_4[/mm]
>  => [mm]x_3[/mm] = - 4 [mm]\lambda_3[/mm] - 5 [mm]\lambda_4[/mm]

>  
> [mm]\vektor{x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5}[/mm] = [mm]\lambda_1 \vektor{-2 \\ 0 \\ 0 \\ 0 \\ 0} \lambda_2 \vektor{-3 \\ 0 \\ 0 \\ 0 \\ 0}[/mm]
> + [mm]\lambda_3 \vektor{1 \\ 0 \\ -4 \\ 0 \\ 0}[/mm] + [mm]\lambda_4 \vektor{-2 \\ 0 \\ -5 \\ 0 \\ 0}[/mm]
>  
>
> sofern ich mich nicht verrechnet habe solle dann
>  
> [mm]\vektor{(-2,0,0,0,0) \\ (-3,0,0,0,0) \\ (1,0,-4,0,0) \\ (-2,0,-5,0,0)}[/mm]
> * [mm]\vektor{x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5}[/mm] = 0 ergeben,
> wobei der Variablenvektor aus U stammt.


Bezug
                                                
Bezug
direktes Komplement, ON-Basis: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:22 Di 14.10.2008
Autor: uniklu

Hallo!

Danke für die Antwort.

Das untere war der Versuch für Teil b) der Aufgabe. Ist natürlich falsch

Hier kommt folgendes heraus:

(1,2,3,-1,2)
(0,0,1,4,-5)

ein LGS erstellt.

[mm] x_2 [/mm] = [mm] \lambda_1 [/mm]
[mm] x_4 [/mm] = [mm] \lambda_2 [/mm]
[mm] x_5 [/mm] = [mm] \lambda_3 [/mm]

=> [mm] x_1 [/mm] = - 2 [mm] \lambda_1 [/mm] - 3 [mm] x_2 [/mm] + [mm] \lambda_2 [/mm] - 2 [mm] \lambda_3 [/mm]
=> [mm] x_3 [/mm] = - 4 [mm] \lambda_2 [/mm] - 5 [mm] \lambda_3 [/mm]

[mm] \vektor{x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5} [/mm] = [mm] \lambda_1 \vektor{-2 \\ 1 \\ 0 \\ 0 \\ 0} \lambda_2 \vektor{-34 \\ 0 \\ -10 \\ 1 \\ 0} [/mm] + [mm] \lambda_3 \vektor{17 \\ 0 \\ 5 \\ 0 \\ 1} [/mm]


[mm] \vektor{(-2,1,0,0,0) \\ (-34,0,0,-10,1) \\ (17,0,5,0,1)} [/mm] * [mm] \vektor{x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5} [/mm] = 0 ergeben, wobei der Variablenvektor aus U stammt.


noch mal zu a)
Gibt es hier einen strukturierten Ansatz? Sonst findet sich die Lösung nämlich durch stupides Probieren: [mm] W_2 [/mm] = {(1,3,0,1,2),(2,1,0,2,1),(-1,0,1,2,1)}

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de